On an optimal spline method for solving operator equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2002), pp. 23-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_2_a3,
     author = {B. G. Gabdulkhaev and I. K. Rakhimov},
     title = {On an optimal spline method for solving operator equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--36},
     publisher = {mathdoc},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_2_a3/}
}
TY  - JOUR
AU  - B. G. Gabdulkhaev
AU  - I. K. Rakhimov
TI  - On an optimal spline method for solving operator equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 23
EP  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_2_a3/
LA  - ru
ID  - IVM_2002_2_a3
ER  - 
%0 Journal Article
%A B. G. Gabdulkhaev
%A I. K. Rakhimov
%T On an optimal spline method for solving operator equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 23-36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_2_a3/
%G ru
%F IVM_2002_2_a3
B. G. Gabdulkhaev; I. K. Rakhimov. On an optimal spline method for solving operator equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2002), pp. 23-36. http://geodesic.mathdoc.fr/item/IVM_2002_2_a3/

[1] Arnold D. N., “A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method”, Math. Comput., 41:164 (1983), 383–397 | DOI | MR | Zbl

[2] Valeeva R. T., Splain-trigonometricheskii metod Galërkina resheniya integralnykh uravnenii, Dep. v VINITI 04.09.92, No 2726-B92, Kazansk. gos. un-t, Kazan, 1992, 15 pp.

[3] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995, 230 pp. | MR

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[5] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[6] Gabdulkhaev B. G., “Optimizatsiya pryamykh i proektsionnykh metodov resheniya operatornykh uravnenii”, Izv. vuzov. Matematika, 1999, no. 12, 3–18 | MR | Zbl

[7] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii I-roda, Izd-vo Kazansk. un-ta, Kazan, 1994, 288 pp. | MR

[8] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Ucheb. posobie, Nauka, M., 1981, 416 pp. | MR

[9] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR

[10] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[11] Gabdulkhaev B. G., “Konechnomernye approksimatsii singulyarnykh integralov i pryamye metody resheniya osobykh integralnykh i integrodifferentsialnykh uravnenii”, Itogi nauki i tekhn. Matem. analiz, 18, Nauka, M., 1980, 251–307 | MR | Zbl

[12] Popov G. Ya., Kontsentratsiya uprugikh napryazhenii vozle shtampov, razrezov, tonkikh vklyuchenii i podkreplenii, Nauka, M., 1982, 344 pp.

[13] Panasyuk V. V., Savruk M. P., Nazarchuk Z. T., Metod singulyarnykh integralnykh uravnenii v dvumernykh zadachakh difraktsii, Nauk. dumka, Kiev, 1984, 344 pp. | MR

[14] Nazarchuk Z. T., Chislennoe issledovanie difraktsii voln na tsilindricheskikh strukturakh, Nauk. dumka, Kiev, 1989, 256 pp. | MR

[15] Michlin S. G., Prößdorf S., Singuläre Integraloperatoren, Akademic-Verlag, Berlin, 1980, 514 S. | MR | Zbl

[16] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov, II”, Izv. vuzov. Matematika, 1968, no. 10, 21–29 | Zbl

[17] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. | MR