The jump problem for the Helmholtz equation in a~plane-layered medium and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a7,
     author = {A. Makher and N. B. Pleschinskii},
     title = {The jump problem for the {Helmholtz} equation in a~plane-layered medium and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--56},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/}
}
TY  - JOUR
AU  - A. Makher
AU  - N. B. Pleschinskii
TI  - The jump problem for the Helmholtz equation in a~plane-layered medium and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 45
EP  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/
LA  - ru
ID  - IVM_2002_1_a7
ER  - 
%0 Journal Article
%A A. Makher
%A N. B. Pleschinskii
%T The jump problem for the Helmholtz equation in a~plane-layered medium and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 45-56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/
%G ru
%F IVM_2002_1_a7
A. Makher; N. B. Pleschinskii. The jump problem for the Helmholtz equation in a~plane-layered medium and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 45-56. http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/

[1] Pleshchinskaya I. E., Pleshchinskii N. B., “The Cauchy problem and potentials for elliptic partial differential equations and some of their applications”, Advances in Equations and Inequalities, 1999, 127–146

[2] Pleshchinskaya I. E., Pleshchinskii N. B., “On classification of eigen waves of planar, cylindrical and spherical dielectric waveguides”, Math. meth. in electromagnetic theory, Proc. Int. Conf. MME$*$98. V. 2 (Kharkov, Ukraine, June 2–5, 1998), 781–783

[3] Pleshchinskii N. B., Tumakov D. N., “On solving diffraction problems for the junctions of open waveguides in the classes of distributions”, Math. meth. in electromagnetic theory, Proc. Int. Conf. MME$*$98. V. 2 (Kharkov, Ukraine, June 2–5, 1998), 801–803

[4] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973, 343 pp.

[5] Vinogradova M. B., Rudenko O. V., Sukhorukov A. P., Teoriya voln, Nauka, M., 1979, 384 pp. | MR

[6] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984, 512 pp.

[7] Khenl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964, 428 pp.

[8] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh (psevdodifferentsialnye operatory v zadachakh difraktsii), IPRZhR, M., 1996, 176 pp.

[9] Egorov Yu. V., Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984, 360 pp. | MR

[10] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977, 288 pp. | MR | Zbl

[11] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, In. lit., M., 1962, 280 pp. | MR | Zbl