Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_1_a7, author = {A. Makher and N. B. Pleschinskii}, title = {The jump problem for the {Helmholtz} equation in a~plane-layered medium and its applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--56}, publisher = {mathdoc}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/} }
TY - JOUR AU - A. Makher AU - N. B. Pleschinskii TI - The jump problem for the Helmholtz equation in a~plane-layered medium and its applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 45 EP - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/ LA - ru ID - IVM_2002_1_a7 ER -
%0 Journal Article %A A. Makher %A N. B. Pleschinskii %T The jump problem for the Helmholtz equation in a~plane-layered medium and its applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2002 %P 45-56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/ %G ru %F IVM_2002_1_a7
A. Makher; N. B. Pleschinskii. The jump problem for the Helmholtz equation in a~plane-layered medium and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 45-56. http://geodesic.mathdoc.fr/item/IVM_2002_1_a7/
[1] Pleshchinskaya I. E., Pleshchinskii N. B., “The Cauchy problem and potentials for elliptic partial differential equations and some of their applications”, Advances in Equations and Inequalities, 1999, 127–146
[2] Pleshchinskaya I. E., Pleshchinskii N. B., “On classification of eigen waves of planar, cylindrical and spherical dielectric waveguides”, Math. meth. in electromagnetic theory, Proc. Int. Conf. MME$*$98. V. 2 (Kharkov, Ukraine, June 2–5, 1998), 781–783
[3] Pleshchinskii N. B., Tumakov D. N., “On solving diffraction problems for the junctions of open waveguides in the classes of distributions”, Math. meth. in electromagnetic theory, Proc. Int. Conf. MME$*$98. V. 2 (Kharkov, Ukraine, June 2–5, 1998), 801–803
[4] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973, 343 pp.
[5] Vinogradova M. B., Rudenko O. V., Sukhorukov A. P., Teoriya voln, Nauka, M., 1979, 384 pp. | MR
[6] Adams M., Vvedenie v teoriyu opticheskikh volnovodov, Mir, M., 1984, 512 pp.
[7] Khenl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964, 428 pp.
[8] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh (psevdodifferentsialnye operatory v zadachakh difraktsii), IPRZhR, M., 1996, 176 pp.
[9] Egorov Yu. V., Lineinye differentsialnye uravneniya glavnogo tipa, Nauka, M., 1984, 360 pp. | MR
[10] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Nauka, M., 1977, 288 pp. | MR | Zbl
[11] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, In. lit., M., 1962, 280 pp. | MR | Zbl