On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a5,
     author = {T. B. Zhogova},
     title = {On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--38},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/}
}
TY  - JOUR
AU  - T. B. Zhogova
TI  - On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 31
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/
LA  - ru
ID  - IVM_2002_1_a5
ER  - 
%0 Journal Article
%A T. B. Zhogova
%T On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 31-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/
%G ru
%F IVM_2002_1_a5
T. B. Zhogova. On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 31-38. http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/

[1] Zhogova T. B., “Proektivnoe izgibanie vtorogo poryadka semeistv $L_{2n-1}^m$”, Izv. vuzov. Matematika, 1997, no. 9, 13–16 | MR | Zbl

[2] Finikov S. P., Teoriya par kongruentsii, Gostekhizdat, M., 1956, 443 pp. | MR

[3] Makeev G. N., “K voprosu ob involyutivnosti sistem uravnenii Pfaffa”, Izv. vuzov. Matematika, 1980, no. 1, 39–44 | MR | Zbl

[4] Finikov S. P., Teoriya kongruentsii, GITTL, M.–L., 1950, 528 pp. | MR

[5] Makeev G. N., “O nekotorom obobschenii preobrazovanii Laplasa”, Izv. vuzov. Matematika, 1975, no. 2, 123–125 | MR | Zbl

[6] Makeev G. N., “Semeistva $R_{2n-1}^m$ i $\Phi_{2n-1}^n$”, Izv. vuzov. Matematika, 1990, no. 1, 84–86 | MR