On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 31-38
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2002_1_a5,
author = {T. B. Zhogova},
title = {On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--38},
year = {2002},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/}
}
T. B. Zhogova. On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 31-38. http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/
[1] Zhogova T. B., “Proektivnoe izgibanie vtorogo poryadka semeistv $L_{2n-1}^m$”, Izv. vuzov. Matematika, 1997, no. 9, 13–16 | MR | Zbl
[2] Finikov S. P., Teoriya par kongruentsii, Gostekhizdat, M., 1956, 443 pp. | MR
[3] Makeev G. N., “K voprosu ob involyutivnosti sistem uravnenii Pfaffa”, Izv. vuzov. Matematika, 1980, no. 1, 39–44 | MR | Zbl
[4] Finikov S. P., Teoriya kongruentsii, GITTL, M.–L., 1950, 528 pp. | MR
[5] Makeev G. N., “O nekotorom obobschenii preobrazovanii Laplasa”, Izv. vuzov. Matematika, 1975, no. 2, 123–125 | MR | Zbl
[6] Makeev G. N., “Semeistva $R_{2n-1}^m$ i $\Phi_{2n-1}^n$”, Izv. vuzov. Matematika, 1990, no. 1, 84–86 | MR