Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_1_a5, author = {T. B. Zhogova}, title = {On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {31--38}, publisher = {mathdoc}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/} }
TY - JOUR AU - T. B. Zhogova TI - On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 31 EP - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/ LA - ru ID - IVM_2002_1_a5 ER -
T. B. Zhogova. On the existence of the families $R_{2n-1}^m$ admitting a second-order projective bending. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 31-38. http://geodesic.mathdoc.fr/item/IVM_2002_1_a5/
[1] Zhogova T. B., “Proektivnoe izgibanie vtorogo poryadka semeistv $L_{2n-1}^m$”, Izv. vuzov. Matematika, 1997, no. 9, 13–16 | MR | Zbl
[2] Finikov S. P., Teoriya par kongruentsii, Gostekhizdat, M., 1956, 443 pp. | MR
[3] Makeev G. N., “K voprosu ob involyutivnosti sistem uravnenii Pfaffa”, Izv. vuzov. Matematika, 1980, no. 1, 39–44 | MR | Zbl
[4] Finikov S. P., Teoriya kongruentsii, GITTL, M.–L., 1950, 528 pp. | MR
[5] Makeev G. N., “O nekotorom obobschenii preobrazovanii Laplasa”, Izv. vuzov. Matematika, 1975, no. 2, 123–125 | MR | Zbl
[6] Makeev G. N., “Semeistva $R_{2n-1}^m$ i $\Phi_{2n-1}^n$”, Izv. vuzov. Matematika, 1990, no. 1, 84–86 | MR