Estimates for the rate of convergence of the projection-difference method for hyperbolic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a4,
     author = {S. E. Zhelezovsky},
     title = {Estimates for the rate of convergence of the projection-difference method for hyperbolic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--30},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a4/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
TI  - Estimates for the rate of convergence of the projection-difference method for hyperbolic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 21
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_1_a4/
LA  - ru
ID  - IVM_2002_1_a4
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%T Estimates for the rate of convergence of the projection-difference method for hyperbolic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 21-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_1_a4/
%G ru
%F IVM_2002_1_a4
S. E. Zhelezovsky. Estimates for the rate of convergence of the projection-difference method for hyperbolic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 21-30. http://geodesic.mathdoc.fr/item/IVM_2002_1_a4/

[1] Zlotnik A. A., “Otsenki skorosti skhodimosti proektsionno-setochnykh metodov dlya giperbolicheskikh uravnenii vtorogo poryadka”, Vychisl. protsessy i sistemy, no. 8, M., 1991, 116–167 | MR | Zbl

[2] Zhelezovskii S. E., Bukesova N. N., “Otsenki pogreshnosti proektsionnogo metoda dlya abstraktnogo kvazilineinogo giperbolicheskogo uravneniya”, Izv. vuzov. Matematika, 1999, no. 5, 94–96 | MR

[3] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[4] Smagin V. V., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda priblizhennogo resheniya abstraktnogo parabolicheskogo uravneniya”, Matem. zametki, 62:6 (1997), 898–909 | MR | Zbl

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[6] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989, 616 pp. | MR

[7] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 416 pp. | Zbl

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[9] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[10] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[11] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981, 544 pp. | MR