Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_1_a10, author = {E. N. Sosov}, title = {On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--75}, publisher = {mathdoc}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/} }
TY - JOUR AU - E. N. Sosov TI - On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 71 EP - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/ LA - ru ID - IVM_2002_1_a10 ER -
E. N. Sosov. On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 71-75. http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/
[1] Marinov A. V., “Ustoichivost $\varepsilon$-kvazireshenii operatornykh uravnenii 1 roda”, Priblizhenie funktsii polinomami i splainami, Sverdlovsk, 1985, 105–117 | MR | Zbl
[2] Marinov A. V., “Otsenki ustoichivosti metricheskoi $\varepsilon$-proektsii cherez modul vypuklosti prostranstva”, Tr. in-ta matem. i mekh. UrO RAN, 2 (1992), 85–109 | MR | Zbl
[3] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR
[4] Busemann H., Phadke B. B., Spaces with distinguished geodesics, Marsel Dekker Inc., New York–Basel, 1987, 159 pp. | MR | Zbl
[5] Alexander S. B., Bishop R. L., “The Hadamard–Cartan theorem in locally convex metric spaces”, L'Enseign. Math., 36 (1990), 309–320 | MR | Zbl