On the continuity of the metric $\delta$-projection onto a convex set in a special metric space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 71-75
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2002_1_a10,
author = {E. N. Sosov},
title = {On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {71--75},
year = {2002},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/}
}
E. N. Sosov. On the continuity of the metric $\delta$-projection onto a convex set in a special metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 71-75. http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/
[1] Marinov A. V., “Ustoichivost $\varepsilon$-kvazireshenii operatornykh uravnenii 1 roda”, Priblizhenie funktsii polinomami i splainami, Sverdlovsk, 1985, 105–117 | MR | Zbl
[2] Marinov A. V., “Otsenki ustoichivosti metricheskoi $\varepsilon$-proektsii cherez modul vypuklosti prostranstva”, Tr. in-ta matem. i mekh. UrO RAN, 2 (1992), 85–109 | MR | Zbl
[3] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR
[4] Busemann H., Phadke B. B., Spaces with distinguished geodesics, Marsel Dekker Inc., New York–Basel, 1987, 159 pp. | MR | Zbl
[5] Alexander S. B., Bishop R. L., “The Hadamard–Cartan theorem in locally convex metric spaces”, L'Enseign. Math., 36 (1990), 309–320 | MR | Zbl