On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 71-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a10,
     author = {E. N. Sosov},
     title = {On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--75},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 71
EP  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/
LA  - ru
ID  - IVM_2002_1_a10
ER  - 
%0 Journal Article
%A E. N. Sosov
%T On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 71-75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/
%G ru
%F IVM_2002_1_a10
E. N. Sosov. On the continuity of the metric $\delta$-projection onto a~convex set in a~special metric space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 71-75. http://geodesic.mathdoc.fr/item/IVM_2002_1_a10/

[1] Marinov A. V., “Ustoichivost $\varepsilon$-kvazireshenii operatornykh uravnenii 1 roda”, Priblizhenie funktsii polinomami i splainami, Sverdlovsk, 1985, 105–117 | MR | Zbl

[2] Marinov A. V., “Otsenki ustoichivosti metricheskoi $\varepsilon$-proektsii cherez modul vypuklosti prostranstva”, Tr. in-ta matem. i mekh. UrO RAN, 2 (1992), 85–109 | MR | Zbl

[3] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR

[4] Busemann H., Phadke B. B., Spaces with distinguished geodesics, Marsel Dekker Inc., New York–Basel, 1987, 159 pp. | MR | Zbl

[5] Alexander S. B., Bishop R. L., “The Hadamard–Cartan theorem in locally convex metric spaces”, L'Enseign. Math., 36 (1990), 309–320 | MR | Zbl