Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 9-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_1_a1,
     author = {M. B. Banaru},
     title = {Two theorems on cosymplectic hypersurfaces of six-dimensional {Hermitian} submanifolds of the {Cayley} algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--12},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/}
}
TY  - JOUR
AU  - M. B. Banaru
TI  - Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 9
EP  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/
LA  - ru
ID  - IVM_2002_1_a1
ER  - 
%0 Journal Article
%A M. B. Banaru
%T Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 9-12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/
%G ru
%F IVM_2002_1_a1
M. B. Banaru. Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 9-12. http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/

[1] Goldberg S., “Totally geodesic hypersurfaces of Kaehler manifolds”, Pacif. J. Math., 27:2 (1968), 275–281 | MR | Zbl

[2] Tashiro Y., “On contact structure on hypersurfaces in complex manifolds, I”, Tôhoku. Math. J., 15:1 (1963), 62–78 | DOI | MR | Zbl

[3] Kirichenko V. F., Stepanova L. V., “O geometrii giperpoverkhnostei kvazikelerovykh mnogoobrazii”, UMN, 1995, no. 2, 213–214 | MR | Zbl

[4] Gray A., “Vector cross products on manifolds”, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl

[5] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Vestn. Mosk. un-ta, 1973, no. 3, 70–75

[6] Blair D. E., “The theory of quasi-Sasakian structures”, J. Diff. Geom., 1 (1967), 331–345 | MR | Zbl

[7] Stepanova L. V., “Kvazisasakieva struktura na giperpoverkhnostyakh ermitovykh mnogoobrazii”, Nauchn. tr. Mosk. ped. gos. un-ta, 1995, 187–191

[8] Banaru M. B., “Klassy Greya-Khervelly pochti ermitovykh struktur na $6$-mernykh podmnogoobraziyakh algebry Keli”, Nauchn. tr. Mosk. ped. gos. un-ta, 1994, 36–38 | MR

[9] Kirichenko V. F., “Metody obobschennoi pochti ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR

[10] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Sb. perevodov. Matem., 1 (1957), 117–153

[11] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, In. lit., M., 1960, 216 pp. | MR

[12] Banaru M. B., “O pochti ermitovykh strukturakh, indutsirovannykh $3$-vektornymi proizvedeniyami na $6$-mernykh orientiruemykh podmnogoobraziyakh algebry oktav”, Polianaliticheskie funktsii, Smolensk, 1997, 113–117 | MR

[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. II, Nauka, M., 1981, 414 pp.