Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_1_a1, author = {M. B. Banaru}, title = {Two theorems on cosymplectic hypersurfaces of six-dimensional {Hermitian} submanifolds of the {Cayley} algebra}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {9--12}, publisher = {mathdoc}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/} }
TY - JOUR AU - M. B. Banaru TI - Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 9 EP - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/ LA - ru ID - IVM_2002_1_a1 ER -
M. B. Banaru. Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of the Cayley algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2002), pp. 9-12. http://geodesic.mathdoc.fr/item/IVM_2002_1_a1/
[1] Goldberg S., “Totally geodesic hypersurfaces of Kaehler manifolds”, Pacif. J. Math., 27:2 (1968), 275–281 | MR | Zbl
[2] Tashiro Y., “On contact structure on hypersurfaces in complex manifolds, I”, Tôhoku. Math. J., 15:1 (1963), 62–78 | DOI | MR | Zbl
[3] Kirichenko V. F., Stepanova L. V., “O geometrii giperpoverkhnostei kvazikelerovykh mnogoobrazii”, UMN, 1995, no. 2, 213–214 | MR | Zbl
[4] Gray A., “Vector cross products on manifolds”, Trans. Amer. Math. Soc., 141 (1969), 465–504 | DOI | MR | Zbl
[5] Kirichenko V. F., “Pochti kelerovy struktury, indutsirovannye $3$-vektornymi proizvedeniyami na shestimernykh podmnogoobraziyakh algebry Keli”, Vestn. Mosk. un-ta, 1973, no. 3, 70–75
[6] Blair D. E., “The theory of quasi-Sasakian structures”, J. Diff. Geom., 1 (1967), 331–345 | MR | Zbl
[7] Stepanova L. V., “Kvazisasakieva struktura na giperpoverkhnostyakh ermitovykh mnogoobrazii”, Nauchn. tr. Mosk. ped. gos. un-ta, 1995, 187–191
[8] Banaru M. B., “Klassy Greya-Khervelly pochti ermitovykh struktur na $6$-mernykh podmnogoobraziyakh algebry Keli”, Nauchn. tr. Mosk. ped. gos. un-ta, 1994, 36–38 | MR
[9] Kirichenko V. F., “Metody obobschennoi pochti ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geom., 18, VINITI, M., 1986, 25–71 | MR
[10] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Sb. perevodov. Matem., 1 (1957), 117–153
[11] Likhnerovich A., Teoriya svyaznostei v tselom i gruppy golonomii, In. lit., M., 1960, 216 pp. | MR
[12] Banaru M. B., “O pochti ermitovykh strukturakh, indutsirovannykh $3$-vektornymi proizvedeniyami na $6$-mernykh orientiruemykh podmnogoobraziyakh algebry oktav”, Polianaliticheskie funktsii, Smolensk, 1997, 113–117 | MR
[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. II, Nauka, M., 1981, 414 pp.