Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a7, author = {M. V. Smolnikova and S. E. Stepanov}, title = {Fundamental first-order differential operators on exterior and symmetric forms}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--60}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/} }
TY - JOUR AU - M. V. Smolnikova AU - S. E. Stepanov TI - Fundamental first-order differential operators on exterior and symmetric forms JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 55 EP - 60 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/ LA - ru ID - IVM_2002_11_a7 ER -
M. V. Smolnikova; S. E. Stepanov. Fundamental first-order differential operators on exterior and symmetric forms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 55-60. http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/
[1] Burginon Zh.-P., “Formuly Veitsenbëka v razmernosti 4”, Chetyrekhmernaya rimanova geometriya, Seminar Artura Besse 1978/1979, Mir, M., 1985, 260–279 | MR
[2] Stepanov S. E., “On conformal Killing 2-form of the electromagnetic field”, Journal of Geometry and Physics, 33:3–4 (2000), 191–209 | DOI | MR | Zbl
[3] Stepanov S. E., Rodionov V. V., “Dopolnenie k odnoi rabote Zh.-P. Burginona”, Differentsialnaya geometriya mnogoobrazii figur, 1997, no. 28, 68–72 | Zbl
[4] Stepanov S. E., “A class of closed forms and special Maxwell's equations”, Tensor, 58 (1997), 233–242 | MR | Zbl
[5] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970, 359 pp. | MR
[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR
[7] Kramer D. i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982, 416 pp. | MR
[8] Stepanov S. E., “Tekhnika Bokhnera dlya $m$-mernykh kompaktnykh mnogoobrazii s $\mathrm{SL}(m,R)$-strukturoi”, Algebra i analiz, 10:4 (1998), 192–209 | MR | Zbl
[9] Eizenkhart L. P., Rimanova geometriya, Inost. lit., M., 1948, 316 pp.
[10] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp. | MR
[11] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR
[12] Kalina J., Pierzchalski A., Walczak P., “Only one of generalized gradients can be elliptic”, Ann. Polon. Math., LXVII:2 (1997), 111–120 | MR
[13] Kalina J., Orsted B., Pierzchalski A., Walczak P., Zhang G., “Elliptic gradients and highest weights”, Bull. Acad. Polon. Sci. Ser. Math., 44 (1996), 511–519 | MR
[14] Katzin G. H., Levine J., “Note on the number of linearly independent $m^{\mathrm{th}}$-order first integrals space of constant curvature”, Tensor, 19:1 (1968), 42–44 | MR | Zbl
[15] Besse A., Mnogoobraziya Einshteina, T. 1, 2, Mir, M., 1990, 703 pp. | MR | Zbl
[16] Nijenhuis A., “A note on first integrals of geodesics”, Proc. Kon. Ned. Acad. Van Wetens., Ser. A, 52, Amsterdam, 1967, 141–145 | MR