Fundamental first-order differential operators on exterior and symmetric forms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 55-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_11_a7,
     author = {M. V. Smolnikova and S. E. Stepanov},
     title = {Fundamental first-order differential operators on exterior and symmetric forms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--60},
     publisher = {mathdoc},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/}
}
TY  - JOUR
AU  - M. V. Smolnikova
AU  - S. E. Stepanov
TI  - Fundamental first-order differential operators on exterior and symmetric forms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 55
EP  - 60
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/
LA  - ru
ID  - IVM_2002_11_a7
ER  - 
%0 Journal Article
%A M. V. Smolnikova
%A S. E. Stepanov
%T Fundamental first-order differential operators on exterior and symmetric forms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 55-60
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/
%G ru
%F IVM_2002_11_a7
M. V. Smolnikova; S. E. Stepanov. Fundamental first-order differential operators on exterior and symmetric forms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 55-60. http://geodesic.mathdoc.fr/item/IVM_2002_11_a7/

[1] Burginon Zh.-P., “Formuly Veitsenbëka v razmernosti 4”, Chetyrekhmernaya rimanova geometriya, Seminar Artura Besse 1978/1979, Mir, M., 1985, 260–279 | MR

[2] Stepanov S. E., “On conformal Killing 2-form of the electromagnetic field”, Journal of Geometry and Physics, 33:3–4 (2000), 191–209 | DOI | MR | Zbl

[3] Stepanov S. E., Rodionov V. V., “Dopolnenie k odnoi rabote Zh.-P. Burginona”, Differentsialnaya geometriya mnogoobrazii figur, 1997, no. 28, 68–72 | Zbl

[4] Stepanov S. E., “A class of closed forms and special Maxwell's equations”, Tensor, 58 (1997), 233–242 | MR | Zbl

[5] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970, 359 pp. | MR

[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR

[7] Kramer D. i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982, 416 pp. | MR

[8] Stepanov S. E., “Tekhnika Bokhnera dlya $m$-mernykh kompaktnykh mnogoobrazii s $\mathrm{SL}(m,R)$-strukturoi”, Algebra i analiz, 10:4 (1998), 192–209 | MR | Zbl

[9] Eizenkhart L. P., Rimanova geometriya, Inost. lit., M., 1948, 316 pp.

[10] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp. | MR

[11] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR

[12] Kalina J., Pierzchalski A., Walczak P., “Only one of generalized gradients can be elliptic”, Ann. Polon. Math., LXVII:2 (1997), 111–120 | MR

[13] Kalina J., Orsted B., Pierzchalski A., Walczak P., Zhang G., “Elliptic gradients and highest weights”, Bull. Acad. Polon. Sci. Ser. Math., 44 (1996), 511–519 | MR

[14] Katzin G. H., Levine J., “Note on the number of linearly independent $m^{\mathrm{th}}$-order first integrals space of constant curvature”, Tensor, 19:1 (1968), 42–44 | MR | Zbl

[15] Besse A., Mnogoobraziya Einshteina, T. 1, 2, Mir, M., 1990, 703 pp. | MR | Zbl

[16] Nijenhuis A., “A note on first integrals of geodesics”, Proc. Kon. Ned. Acad. Van Wetens., Ser. A, 52, Amsterdam, 1967, 141–145 | MR