Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a5, author = {V. S. Klimov}, title = {Symmetrization of functions from {Sobolev} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--51}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a5/} }
V. S. Klimov. Symmetrization of functions from Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 45-51. http://geodesic.mathdoc.fr/item/IVM_2002_11_a5/
[1] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp. | MR
[2] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR
[3] Klimov V. S., “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 645–671 | MR | Zbl
[4] Khadviger G., Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, In. lit., M., 1966, 416 pp.
[5] Arkin V. I., Levin V. L., “Vypuklost znachenii vektornykh integralov, teoremy izmerimogo vybora i variatsionnye zadachi”, UMN, 27:3 (1972), 21–77 | MR | Zbl
[6] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl
[7] Nguen Khong Tkhai, Idealnye prostranstva vektor-funktsii: geometriya, interpolyatsiya i primeneniya k nelineinym operatoram i uravneniyam, Dis. ...dokt. fiz.-matem. nauk, Minsk, 1992, 341 pp.
[8] Klimov V. S., “O simmetrizatsii anizotropnykh integralnykh funktsionalov”, Izv. vuzov. Matematika, 1999, no. 8, 26–32 | MR | Zbl
[9] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR
[10] Zabreiko P. P., Nguen Khong Tkhai, “Teoriya dvoistvennosti idealnykh prostranstv vektor-funktsii”, DAN SSSR, 311:6 (1990), 1296–1299
[11] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR | Zbl
[12] Dubinin V. N., “Capacities and geometric transformations of subsets in $n$-space”, Geom. and Func. Anal., 3:4 (1993), 342–369 | DOI | MR | Zbl