Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a3, author = {K. B. Igudesman}, title = {The fractal dimension of the intersection of standard {Cantor} sets}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--35}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a3/} }
K. B. Igudesman. The fractal dimension of the intersection of standard Cantor sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 32-35. http://geodesic.mathdoc.fr/item/IVM_2002_11_a3/
[1] Mandelbrot B., The fractal geometry of nature, W. H. Freeman and Company, New York, 1977, 469 pp. | MR | Zbl
[2] Kraft R., “Random intersections of thick Cantor sets”, Trans. Amer. Math. Soc., 352:3 (2000), 1315–1328 | DOI | MR | Zbl
[3] Kraft R., “A golden Cantor set”, Amer. Math. Monthly, 105:8 (1998), 718–725 | DOI | MR | Zbl
[4] Williams R. F., “How big is the intersection of two thick Cantor sets?”, Continuum theory and dynamical systems, Proc. AMS–IMS–SIAM Jt. Summer Res. Con. (Arcata/CA, USA, 1989), Contemp. Math., 117, 1991, 163–175 | MR | Zbl
[5] Davis G., Hu Thian-You, “The structure of the intersection of two middle third Cantor sets”, Publ. Math., Barc., 39:1 (1995), 43–60 | MR | Zbl
[6] Li Wenxia, Hiao Dongmei, “Intersection of translations of Cantor triadic set”, Acta Math. Sci. (Engl. Ed.), 19:2 (1999), 214–219 | MR | Zbl
[7] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 431 pp. | MR | Zbl