Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a2, author = {A. A. Ermolitskii}, title = {The hat theorem and problems of the classification of structures on {Riemannian} manifolds}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--31}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a2/} }
TY - JOUR AU - A. A. Ermolitskii TI - The hat theorem and problems of the classification of structures on Riemannian manifolds JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 27 EP - 31 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_11_a2/ LA - ru ID - IVM_2002_11_a2 ER -
A. A. Ermolitskii. The hat theorem and problems of the classification of structures on Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 27-31. http://geodesic.mathdoc.fr/item/IVM_2002_11_a2/
[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR
[2] Ermolitskii A. A., Rimanovy mnogoobraziya s geometricheskimi strukturami, BGPU, Minsk, 1998, 195 pp.
[3] Ermolitskii A. A., “Vtoraya kvadratichnaya forma $G$-struktury i pochti osobye struktury”, Dokl. Bolg. AN, 7:7 (1981), 963–964 | MR
[4] Kirichenko V. F., “Kvaziodnorodnye mnogoobraziya i obobschennye pochti ermitovy struktury”, Izv. AN SSSR, 47:6 (1983), 1208–1223 | MR | Zbl
[5] Bishop R. L., Krittenden R. D., Geometriya mnogoobrazii, Mir, M., 1967, 335 pp. | MR | Zbl
[6] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. mat. pura appl., 123 (1980), 35–58 | DOI | MR | Zbl
[7] Alexiev V. A., Ganchev G. T., “On the classification of the almost contact metric manifolds”, Math. and Educ. in Math., Proceedings of the 15${}^{\mathrm{th}}$ spring conference of the Union of Bulgarian Mathematicians, 1986, 155–161 | MR | Zbl
[8] Chinea D., Gonzalez C., “A classification of almost contact metric manifolds”, Ann. mat. pura appl., 156 (1990), 15–36 | DOI | MR | Zbl
[9] Naveira A. M., “A classification of Riemannian almost-product manifolds”, Rend. math. appl., 3:3 (1983), 577–592 | MR | Zbl