Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a12, author = {S. V. Romanova}, title = {Asymptotic estimates for linear functionals for bounded functions that do not take zero value}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {83--85}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/} }
TY - JOUR AU - S. V. Romanova TI - Asymptotic estimates for linear functionals for bounded functions that do not take zero value JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 83 EP - 85 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/ LA - ru ID - IVM_2002_11_a12 ER -
S. V. Romanova. Asymptotic estimates for linear functionals for bounded functions that do not take zero value. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 83-85. http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/
[1] Krzyz J., “The coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 20 (1968), 314
[2] Hummel J. A., Scheinberg S., Zalcman L., “The coefficient problem for bounded nonvanishing functions”, J. Anal. Math., 34 (1977), 169–190 | DOI | MR
[3] Peretz R., “Applications of subordination theory to the class of bounded nonvanishing functions”, Complex Variables, 17 (1992), 213–222 | MR | Zbl
[4] Szapiel W., “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska, 48 (1994), 169–192 | MR | Zbl
[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl
[6] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976, 344 pp. | MR