Asymptotic estimates for linear functionals for bounded functions that do not take zero value
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 83-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_11_a12,
     author = {S. V. Romanova},
     title = {Asymptotic estimates for linear functionals for bounded functions that do not take zero value},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--85},
     publisher = {mathdoc},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/}
}
TY  - JOUR
AU  - S. V. Romanova
TI  - Asymptotic estimates for linear functionals for bounded functions that do not take zero value
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 83
EP  - 85
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/
LA  - ru
ID  - IVM_2002_11_a12
ER  - 
%0 Journal Article
%A S. V. Romanova
%T Asymptotic estimates for linear functionals for bounded functions that do not take zero value
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 83-85
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/
%G ru
%F IVM_2002_11_a12
S. V. Romanova. Asymptotic estimates for linear functionals for bounded functions that do not take zero value. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 83-85. http://geodesic.mathdoc.fr/item/IVM_2002_11_a12/

[1] Krzyz J., “The coefficient problem for bounded nonvanishing functions”, Ann. Polon. Math., 20 (1968), 314

[2] Hummel J. A., Scheinberg S., Zalcman L., “The coefficient problem for bounded nonvanishing functions”, J. Anal. Math., 34 (1977), 169–190 | DOI | MR

[3] Peretz R., “Applications of subordination theory to the class of bounded nonvanishing functions”, Complex Variables, 17 (1992), 213–222 | MR | Zbl

[4] Szapiel W., “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska, 48 (1994), 169–192 | MR | Zbl

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl

[6] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976, 344 pp. | MR