The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_11_a10,
     author = {T. B. Zhogova},
     title = {The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--78},
     publisher = {mathdoc},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/}
}
TY  - JOUR
AU  - T. B. Zhogova
TI  - The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 75
EP  - 78
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/
LA  - ru
ID  - IVM_2002_11_a10
ER  - 
%0 Journal Article
%A T. B. Zhogova
%T The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 75-78
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/
%G ru
%F IVM_2002_11_a10
T. B. Zhogova. The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 75-78. http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/

[1] Makeev G. N., “O nekotorom obobschenii preobrazovanii Laplasa”, Izv. vuzov. Matematika, 1975, no. 2, 123–125 | MR | Zbl

[2] Makeev G. N., “Semeistva $R_{2n-1}^m$ i $\Phi_{2n-1}^n$”, Izv. vuzov. Matematika, 1990, no. 1, 84–86 | MR

[3] Zhogova T. B., “O kvazigruppe, porozhdaemoi odnim klassom dvuparametricheskikh semeistv dvumernykh ploskostei v $P_5$”, Izv. vuzov. Matematika, 1980, no. 2, 63–66 | MR | Zbl

[4] Finikov S. P., Teoriya par kongruentsii, GITTL, M., 1956, 443 pp. | MR