The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 75-78
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2002_11_a10,
author = {T. B. Zhogova},
title = {The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {75--78},
year = {2002},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/}
}
T. B. Zhogova. The families $V^2_{2n-1}$, $U^m_{2n-1}$ and their projective bending. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 75-78. http://geodesic.mathdoc.fr/item/IVM_2002_11_a10/
[1] Makeev G. N., “O nekotorom obobschenii preobrazovanii Laplasa”, Izv. vuzov. Matematika, 1975, no. 2, 123–125 | MR | Zbl
[2] Makeev G. N., “Semeistva $R_{2n-1}^m$ i $\Phi_{2n-1}^n$”, Izv. vuzov. Matematika, 1990, no. 1, 84–86 | MR
[3] Zhogova T. B., “O kvazigruppe, porozhdaemoi odnim klassom dvuparametricheskikh semeistv dvumernykh ploskostei v $P_5$”, Izv. vuzov. Matematika, 1980, no. 2, 63–66 | MR | Zbl
[4] Finikov S. P., Teoriya par kongruentsii, GITTL, M., 1956, 443 pp. | MR