Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_11_a1, author = {R. F. Bilyalov}, title = {Spinors on {Riemannian} manifolds}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--26}, publisher = {mathdoc}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_11_a1/} }
R. F. Bilyalov. Spinors on Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2002), pp. 8-26. http://geodesic.mathdoc.fr/item/IVM_2002_11_a1/
[1] Cartan E., “Les groups projectifs qui ne laissent invariants aucune multiplicite plane”, Bull. Soc. Math. de France, 41 (1913), 53–96 | MR | Zbl
[2] Van der Waerden B. L., “Spinoranalyse”, Nachr. Acad. Wiss. Göttingen, Math., Physik. Kl., 1929, 100–109 | Zbl
[3] Fock V. A., Ivanenko D. D., “Geometrie quantique lineare et deplacement parallele”, Compt. Rend. Acad. Sci. Paris, 188 (1929), 1470–1472 | Zbl
[4] Rosenfeld L., “Sur le tenseur d'impulsion-energy”, Mem. Acad. Roy. Belgique, 18:6 (1940), 1–30 | MR
[5] Lichnerowicz A., “Spineurs harmoniques”, Compt. Rend. Acad. Sci. Paris, 253:1 (1963), 7–9 | MR
[6] Kosmann Y., “Dérivées de Lie des spineurs”, Compt. Rend. Acad. Sci. Paris, 262 A (1966), 289–292 | MR | Zbl
[7] Bourguignon J.-P., Gauduchon P., “Opérateurs de Dirac et variations de métriques”, Commun. Math. Phys., 144 (1992), 581–599 | DOI | MR | Zbl
[8] Bilyalov R. F., “Zakony sokhraneniya dlya spinornykh polei na rimanovykh prostranstvenno-vremennykh mnogoobraziyakh”, Teor. i matem. fizika, 90:3 (1992), 369–379 | MR | Zbl
[9] Bilyalov R. F., “Simmetricheskii tenzor energii-impulsa spinornykh polei”, Teor. i matem. fizika, 108:2 (1996), 306–314 | MR | Zbl
[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR
[11] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 495 pp. | MR
[12] Lankaster P., Teoriya matrits, Gl. red. fiz.-mat. lit-ry, M., 1982, 270 pp. | MR