Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_10_a6, author = {S. Ya. Havinson}, title = {Approximations by wedge elements taking into account the values of the approximating elements}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--84}, publisher = {mathdoc}, number = {10}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_10_a6/} }
TY - JOUR AU - S. Ya. Havinson TI - Approximations by wedge elements taking into account the values of the approximating elements JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 71 EP - 84 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_10_a6/ LA - ru ID - IVM_2002_10_a6 ER -
S. Ya. Havinson. Approximations by wedge elements taking into account the values of the approximating elements. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 71-84. http://geodesic.mathdoc.fr/item/IVM_2002_10_a6/
[1] Davis Ph., Fan K., “Complete sequences and approximation in normed linear spaces”, Duke Math. J., 24:2 (1957), 183–192 | DOI | MR | Zbl
[2] Khavinson S. Ya., “Nekotorye voprosy polnoty sistem”, DAN SSSR, 137:4 (1961), 793–796 | Zbl
[3] Khavinson S. Ya., “Nekotorye teoremy o priblizhenii s uchetom velichin koeffitsientov priblizhayuschikh mnogochlenov”, DAN SSSR, 196:6 (1971), 1283–1286 | Zbl
[4] Khavinson S. Ya., “O polnykh sistemakh v banakhovykh prostranstvakh”, Izv. AN ArmSSR. Ser. matem., 20:2 (1985), 89–111 | MR | Zbl
[5] Khavinson S. Ya., “Summy Golubeva: teoriya ekstremalnykh zadach tipa zadachi ob analiticheskoi emkosti i soputstvuyuschikh approksimatsionnykh protsessov”, UMN, 54:4 (1999), 75–142 | MR | Zbl
[6] Khavinson S. Ya., “Some remarks to problems of approximation with prescribed rate”, Operator theory: advances and applications, 113 (2000), 127–133 | MR | Zbl
[7] Krein M. G., “$L$-problema v abstraktnom lineinom normirovannom prostranstve”, Statya IV v kn.: N. I. Akhiezer, M. G. Krein, O nekotorykh voprosakh teorii momentov, GONTI, Kharkov, 1938
[8] Nikolskii S. M., “Priblizhenie periodicheskikh funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10:3 (1946), 207–256 | MR | Zbl
[9] Garkavi A. L., “Teoremy dvoistvennosti dlya priblizhenii posredstvom elementov vypuklykh mnozhestv”, UMN, 16:4 (1961), 141–145 | MR | Zbl
[10] Khavinson S. Ya., Chatskaya E. Sh., Sootnosheniya dvoistvennosti i kriterii elementov nailuchshego priblizheniya, MISI im. V. V. Kuibysheva, Moskva, 1976, 46 pp.
[11] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.
[12] Diendonné J., “Sur le théorème de Hahn–Banach”, Rev. Sci., 79 (1941), 642–643 | MR
[13] Dei M. M., Lineinye normirovannye prostranstva, In. lit., M., 1961, 232 pp.
[14] Godini G., “Despre cea mai buna approximare in spatii vectoriale normate prin elemente din conuri convexe”, Studii sie cercetari math. Akad. RSR, 21:6 (1969), 931–936 | MR | Zbl
[15] Kaminskii V. A., “Zadachi nailuchshego priblizheniya v prostranstvakh s konusom”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Kalinin, 1970, 56–59
[16] Kaminskii V. A., “Zadachi uslovnoi minimizatsii sublineinogo funktsionala v banakhovom prostranstve s konusom”, Tr. tsentralnogo zonalnogo ob'edineniya matem. kafedr, Kalinin, 1970, 99–108 | MR
[17] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR
[18] Khavin V. P., “O prostranstve ogranichennykh regulyarnykh funktsii”, DAN SSSR, 131:1 (1960), 40–43
[19] Khavin V. P., “O prostranstve ogranichennykh regulyarnykh funktsii”, Sib. matem. zhurn., 2:4 (1961), 622–638
[20] Rubel L. A., Shields A. L., “The space of bounded analytic functions on a region”, Ann. Inst. Fourier. Grenoble, 16:1 (1966), 235–277 | MR | Zbl