Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_10_a2, author = {B. G. Gabdulkhaev}, title = {Solution of operator and integral equations by the {Bogolyubov--Krylov} method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {34--47}, publisher = {mathdoc}, number = {10}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_10_a2/} }
B. G. Gabdulkhaev. Solution of operator and integral equations by the Bogolyubov--Krylov method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 34-47. http://geodesic.mathdoc.fr/item/IVM_2002_10_a2/
[1] Krylov N. M., Izbrannye trudy, T. 1.1, Izd-vo AN USSR, Kiev, 1961, 266 pp. | MR
[2] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962, 708 pp. | MR
[3] Tsetsokho V. A., Chislennoe reshenie zadach difraktsii metodom potentsialov, Dis. ... d-ra fiz.-matem. nauk, Novosibirsk, 1987, 38 pp.
[4] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii I-go roda, Izd-vo Kazansk. un-ta, Kazan, 1994, 288 pp. | MR
[5] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995, 230 pp. | MR
[6] Meleshko I. N., Priblizhennye metody resheniya kraevykh zadach teorii teploprovodnosti na osnove spetsialnykh formul dlya integralov, Dis. ...d-ra fiz.-matem. nauk, Minsk, 2002, 264 pp.
[7] Samoilova E. N., “Splainovye priblizheniya resheniya singulyarnogo integro-differentsialnogo uravneniya”, Izv. vuzov. Matematika, 2001, no. 11, 35–45 | MR | Zbl
[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959, 684 pp. | MR
[9] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR
[10] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR
[11] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR
[12] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR
[13] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976, 304 pp. | MR
[14] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986, 744 pp. | MR
[15] Gabdulkhaev B. G., Gorlov V. E., “O skhodimosti poligonalnogo metoda resheniya slabo singulyarnykh integralnykh uravnenii”, Funktsionalnyi analiz i ego prilozheniya, Izd-vo Kazansk. un-ta, Kazan, 1975, 60–72
[16] Gabdulkhaev B. G., Akhmetov S. M., “O metode splain-kollokatsii dlya integralnykh uravnenii”, Prilozheniya funktsionalnogo analiza k priblizhennym vychisleniyam, Izd-vo Kazansk. un-ta, Kazan, 1974, 7–14 | MR
[17] Gabdulkhaev B. G., Dushkov P. N., “O poligonalnom metode resheniya integralnykh uravnenii so slaboi osobennostyu”, Prilozheniya funktsionalnogo analiza k priblizhennym vychisleniyam, Izd-vo Kazansk. un-ta, Kazan, 1974, 37–57
[18] Gabdulkhaev B. G., Zhechev I. I., “Poligonalnyi metod resheniya lineinykh uravnenii”, Nauchni Trudove Vissh. pedag. in-ta, g. Plovdiv, no. 1, 1971, 9–26
[19] Gabdulkhaev B. G., “Approksimatsiya polinomami i splainami reshenii slabo singulyarnykh integralnykh uravnenii”, Teoriya priblizheniya funktsii, Nauka, M., 1977, 89–93 | MR