Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_10_a1, author = {S. K. Vodop'yanov and A. D.-O. Ukhlov}, title = {Superposition operators in {Sobolev} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {11--33}, publisher = {mathdoc}, number = {10}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_10_a1/} }
S. K. Vodop'yanov; A. D.-O. Ukhlov. Superposition operators in Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 11-33. http://geodesic.mathdoc.fr/item/IVM_2002_10_a1/
[1] Vodopyanov S. K., Goldshtein V. M., “Strukturnye izomorfizmy prostranstv $W_n^1$ i kvazikonformnye otobrazheniya”, Sib. matem. zhurn., 16:2 (1975), 224–246
[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.
[3] Nakai M., “Algebraic criterion on quasiconformal equivalence of Riemann surfaces”, Nagoya Math. J., 16 (1960), 157–184 | MR | Zbl
[4] Lewis L. G., “Quasiconformal mappings and Royden algebras in space”, Trans. Amer. Math. Soc., 158:2 (1971), 481–492 | DOI | MR
[5] Vodopyanov S. K., Goldshtein V. M., “Funktsionalnye kharakteristiki kvaziizometricheskikh otobrazhenii”, Sib. matem. zhurn., 17:4 (1976), 768–773 | MR
[6] Vodopyanov S. K., Goldshtein V. M., “Novyi funktsionalnyi invariant dlya kvazikonformnykh otobrazhenii”, Nekotorye voprosy sovremennoi teorii funktsii, Materialy konf., Novosibirsk, 1976, 18–20
[7] Vodopyanov S. K., “Otobrazheniya odnorodnykh grupp i vlozheniya funktsionalnykh prostranstv”, Sib. matem. zhurn., 30:5 (1989), 25–41 | MR
[8] Goldshtein V. M., Romanov A. S., “Ob otobrazheniyakh, sokhranyayuschikh prostranstva Soboleva”, Sib. matem. zhurn., 25:3 (1984), 55–61 | MR
[9] Romanov A. S., “O zamene peremennoi v prostranstvakh potentsialov Besselya i Rissa”, Funkts. anal. i mat. fizika, In-t matem. SO AN SSSR, Novosibirsk, 1985, 117–133 | MR | Zbl
[10] Vodopyanov S. K., “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovrem. probl. geometrii i analiza, ed. S. S. Kutateladze, Nauka, Novosibirsk, 1989, 45–89 | MR
[11] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo Leningr. un-ta, L., 1986, 403 pp. | MR
[12] Mazya V. G., Prostranstva Soboleva, Izd-vo Leningr. un-ta, L., 1985, 416 pp. | MR
[13] Reiman M., “Über harmonische Kapazität und quasikonforme Abbildungen in Raum”, Comm. Math. Helv., 44 (1969), 264–307
[14] Gehring F. W., “Lipschitz mappings and the $p$-capacity of rings in $n$-space”, Advances in the Theory of Riemann surfaces, Ann. Math. Stud., 66, 1971, 175–193 | MR
[15] Lelong-Ferrand J., “Etude d'une classe d'applications liées à des homomorphismes d'algèbres de fonctions et généralisant les quasi-conformes”, Duke Math. J., 40 (1973), 163–186 | DOI | MR | Zbl
[16] Vodopyanov S. K., Formula Teilora i funktsionalnye prostranstva, Izd-vo Novosibirck. un-ta, Novosibirsk, 1988, 96 pp. | MR
[17] Vodopyanov S. K., “Vesovye prostranstva Soboleva i teoriya otobrazhenii”, Vsesoyuz. matem. shk. “Teoriya potentsiala”, Tez. dokl. (Katsiveli, 26 iyunya–3 iyulya 1991), In-t matematiki AN USSR, Kiev, 1991, 7
[18] Vodopyanov S. K., Geometricheskie svoistva prostranstv funktsii s obobschennoi gladkostyu, Dis. ...dokt. fiz.-matem. nauk, In-t matematiki im. S. L. Soboleva, Novosibirsk, 1992, 335 pp.
[19] Mostow G. D., “Quasiconformal mappings in $n$-spaces and the rigidity of hyperbolic spaces forms”, Inst. hautes etudes scient. publications mathematiques, 34 (1968), 53–104 | DOI | MR | Zbl
[20] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer, Berlin etc., 1971, 144 pp. | MR
[21] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982, 279 pp. | MR
[22] Gol'dshteĭn V., Gurov L., Romanov A., “Homeomorphisms that induce monomorphisms of Sobolev spaces”, Israel J. Math., 91:1–3 (1995), 31–60 | DOI | MR
[23] Ukhlov A. D., “Otobrazheniya, porozhdayuschie vlozheniya prostranstv Soboleva”, Sib. matem. zhurn., 34:1 (1993), 185–192 | MR | Zbl
[24] Kruglikov V. I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matem. sb., 130:2 (1986), 185–206 | MR
[25] Gol'dshteĭn V., Gurov L., “Applications of change of variables operators for exact embedding theorems”, Integral equations operator theory, 19:1 (1994), 1–24 | DOI | MR
[26] Vodopyanov S. K., “Topologicheskie i geometricheskie svoistva otobrazhenii klassov Soboleva s summiruemym yakobianom, I”, Sib. matem. zhurn., 41:1 (2000), 23–48 | MR
[27] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Soboleva i $(P, Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. matem. zhurn., 39:4 (1998), 776–795 | MR
[28] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Lebega i differentsiruemost kvaziadditivnykh funktsii mnozhestva”, Vladikavkazsk. matem. zhurn., 4:1 (2002), 11–33 | MR | Zbl
[29] Vodop'yanov S. K., “$\mathcal{P}$-differentiability on Carnot groups in different topologies and related topics”, Tr. po analizu i geometrii, Izd-vo In-ta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2000, 603–670 | MR
[30] Vodopyanov S. K., “Operatory podstanovki prostranstv Soboleva”, Sovremen. probl. teorii funktsii i ikh prilozh. (Saratov, yanv. 2002 g.), Saratov, 2002, 42–43
[31] Gusman M., Differentsirovanie integralov v $\mathbb{R}^n$, Mir, M., 1978, 200 pp. | MR
[32] Kherron A. D., Koskela P., “Oblasti Puankare i kvazikonformnye otobrazheniya”, Sib. matem. zhurn., 36:6 (1995), 1416–1434 | MR
[33] Ukhlov A. D., Prostranstva Soboleva i differentsialnye svoistva gomeomorfizmov na gruppakh Karno, Preprint No 18, IPM DVO RAN, Khabarovsk, 2000, 28 pp.
[34] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. | MR | Zbl