Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2002_10_a0, author = {L. A. Aizenberg and I. B. Grossman and Yu. F. Korobeinik}, title = {Some remarks on the {Bohr} radius for power series}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--10}, publisher = {mathdoc}, number = {10}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/} }
TY - JOUR AU - L. A. Aizenberg AU - I. B. Grossman AU - Yu. F. Korobeinik TI - Some remarks on the Bohr radius for power series JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2002 SP - 3 EP - 10 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/ LA - ru ID - IVM_2002_10_a0 ER -
L. A. Aizenberg; I. B. Grossman; Yu. F. Korobeinik. Some remarks on the Bohr radius for power series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/
[1] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., 13:1 (1914), 1–5 | DOI | MR | Zbl
[2] Aizenberg L., Aytuna A., Djakov P., “An abstract approach to Bohr's phenomenon”, Proc. Amer. Math. Soc., 128:9 (2000), 2611–2613 | DOI | MR
[3] Wintner A., “On absolute constant pertaining to Cauchy's “principal moduli” in bounded power series”, Math. Scand., 10:1 (1962), 108–110 | MR
[4] Boas H. P., “Majorant series”, J. Korean Math. Soc., 37:2 (2000), 321–337 | MR | Zbl
[5] Ricci G., “Complementi a un teorema di H. Bohr riquardante le serie di potenze”, Rev. Un. math. Argentina, 17:1 (1955), 185–195 | MR
[6] Djakov P. B., Ramanujan M. S., “A remark on Bohr's theorem and its generalizations”, J. Analysis, 8:1 (2000), 65–77 | MR | Zbl
[7] Boas H. P., Khavinson D., “Bohr's power series theorem in several variables”, Proc. Amer. Math. Soc., 125:10 (1997), 2975–2979 | DOI | MR | Zbl
[8] Aizenberg L., “Multidimensional analogues of Bohr's theorem on power series”, Proc. Amer. Math. Soc., 128:4 (2000), 1147–1155 | DOI | MR | Zbl
[9] Aizenberg L., Aytuna A., Djakov P., “Generalization of theorem of Bohr for bases in spaces of holomorphic functions of several complex variables”, J. Math. Anal. Appl., 258:4 (2001), 429–447 | DOI | MR | Zbl
[10] Aizenberg L., “Bohr theorem”, Encyclopaedia of Math., Suppl. II, Kluwer, Dordrecht, 2000, 2975–2979
[11] Aizenberg L., Tarkhanov N., “A Bohr's phenomenon for elliptic equations”, Proc. London Math. Soc., 28:3 (2001), 385–401 | DOI | MR
[12] Caratheodory C., “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64:4 (1907), 95–115 | DOI | MR | Zbl
[13] Aizenberg L. A., Mityagin B. S., “Prostranstva funktsii, analiticheskikh v kratno-krugovykh oblastyakh”, Sib. matem. zhurnal, 2:2 (1960), 153–170 | MR