Some remarks on the Bohr radius for power series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2002_10_a0,
     author = {L. A. Aizenberg and I. B. Grossman and Yu. F. Korobeinik},
     title = {Some remarks on the {Bohr} radius for power series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {10},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/}
}
TY  - JOUR
AU  - L. A. Aizenberg
AU  - I. B. Grossman
AU  - Yu. F. Korobeinik
TI  - Some remarks on the Bohr radius for power series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2002
SP  - 3
EP  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/
LA  - ru
ID  - IVM_2002_10_a0
ER  - 
%0 Journal Article
%A L. A. Aizenberg
%A I. B. Grossman
%A Yu. F. Korobeinik
%T Some remarks on the Bohr radius for power series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2002
%P 3-10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/
%G ru
%F IVM_2002_10_a0
L. A. Aizenberg; I. B. Grossman; Yu. F. Korobeinik. Some remarks on the Bohr radius for power series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2002), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2002_10_a0/

[1] Bohr H., “A theorem concerning power series”, Proc. London Math. Soc., 13:1 (1914), 1–5 | DOI | MR | Zbl

[2] Aizenberg L., Aytuna A., Djakov P., “An abstract approach to Bohr's phenomenon”, Proc. Amer. Math. Soc., 128:9 (2000), 2611–2613 | DOI | MR

[3] Wintner A., “On absolute constant pertaining to Cauchy's “principal moduli” in bounded power series”, Math. Scand., 10:1 (1962), 108–110 | MR

[4] Boas H. P., “Majorant series”, J. Korean Math. Soc., 37:2 (2000), 321–337 | MR | Zbl

[5] Ricci G., “Complementi a un teorema di H. Bohr riquardante le serie di potenze”, Rev. Un. math. Argentina, 17:1 (1955), 185–195 | MR

[6] Djakov P. B., Ramanujan M. S., “A remark on Bohr's theorem and its generalizations”, J. Analysis, 8:1 (2000), 65–77 | MR | Zbl

[7] Boas H. P., Khavinson D., “Bohr's power series theorem in several variables”, Proc. Amer. Math. Soc., 125:10 (1997), 2975–2979 | DOI | MR | Zbl

[8] Aizenberg L., “Multidimensional analogues of Bohr's theorem on power series”, Proc. Amer. Math. Soc., 128:4 (2000), 1147–1155 | DOI | MR | Zbl

[9] Aizenberg L., Aytuna A., Djakov P., “Generalization of theorem of Bohr for bases in spaces of holomorphic functions of several complex variables”, J. Math. Anal. Appl., 258:4 (2001), 429–447 | DOI | MR | Zbl

[10] Aizenberg L., “Bohr theorem”, Encyclopaedia of Math., Suppl. II, Kluwer, Dordrecht, 2000, 2975–2979

[11] Aizenberg L., Tarkhanov N., “A Bohr's phenomenon for elliptic equations”, Proc. London Math. Soc., 28:3 (2001), 385–401 | DOI | MR

[12] Caratheodory C., “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Math. Ann., 64:4 (1907), 95–115 | DOI | MR | Zbl

[13] Aizenberg L. A., Mityagin B. S., “Prostranstva funktsii, analiticheskikh v kratno-krugovykh oblastyakh”, Sib. matem. zhurnal, 2:2 (1960), 153–170 | MR