The Riemann boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_9_a2,
     author = {A. F. Voronin},
     title = {The {Riemann} boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--23},
     publisher = {mathdoc},
     number = {9},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - The Riemann boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 20
EP  - 23
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/
LA  - ru
ID  - IVM_2001_9_a2
ER  - 
%0 Journal Article
%A A. F. Voronin
%T The Riemann boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 20-23
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/
%G ru
%F IVM_2001_9_a2
A. F. Voronin. The Riemann boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 20-23. http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/

[1] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963, 640 pp. | MR

[2] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, 3-e izd., Nauka, M., 1968, 512 pp. | MR

[4] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilissk. matem. in-ta, 23 (1956), 3–158

[5] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR

[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, 5-e izd., Nauka, M., 1987, 688 pp. | MR

[7] Titchmarsh E. K., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948, 480 pp.