@article{IVM_2001_9_a2,
author = {A. F. Voronin},
title = {The {Riemann} boundary value problem for a~half-plane with a~coefficient that exponentially decreases at infinity},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {20--23},
year = {2001},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/}
}
TY - JOUR AU - A. F. Voronin TI - The Riemann boundary value problem for a half-plane with a coefficient that exponentially decreases at infinity JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 20 EP - 23 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/ LA - ru ID - IVM_2001_9_a2 ER -
A. F. Voronin. The Riemann boundary value problem for a half-plane with a coefficient that exponentially decreases at infinity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 20-23. http://geodesic.mathdoc.fr/item/IVM_2001_9_a2/
[1] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963, 640 pp. | MR
[2] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, 3-e izd., Nauka, M., 1968, 512 pp. | MR
[4] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilissk. matem. in-ta, 23 (1956), 3–158
[5] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR
[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, 5-e izd., Nauka, M., 1987, 688 pp. | MR
[7] Titchmarsh E. K., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948, 480 pp.