@article{IVM_2001_9_a10,
author = {S. N. Timergaliev},
title = {Investigation of the solvability of variational problems in the nonlinear theory of thin shells},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {66--74},
year = {2001},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_9_a10/}
}
TY - JOUR AU - S. N. Timergaliev TI - Investigation of the solvability of variational problems in the nonlinear theory of thin shells JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 66 EP - 74 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2001_9_a10/ LA - ru ID - IVM_2001_9_a10 ER -
S. N. Timergaliev. Investigation of the solvability of variational problems in the nonlinear theory of thin shells. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 66-74. http://geodesic.mathdoc.fr/item/IVM_2001_9_a10/
[1] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR
[2] Vorovich I. I., Lebedev L. P., Shlafman Sh. M., “O nekotorykh pryamykh metodakh i suschestvovanii reshenii v nelineinoi teorii uprugosti nepologikh obolochek vrascheniya”, PMM, 38:2 (1974), 339–348 | MR | Zbl
[3] Shlafman Sh. M., “O suschestvovanii reshenii v nelineinoi teorii nepologikh obolochek”, Izv. Sev.-Kavkazsk. nauchn. tsentra vyssh. shkoly. Ser. estestv. nauk, 1974, no. 4, 49–53
[4] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987, 542 pp.
[5] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR | Zbl
[6] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR | Zbl
[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR
[8] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR