A~spectral theorem in a~space with bilinear form
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_9_a1,
     author = {E. V. Vladova and M. S. Matveichuk},
     title = {A~spectral theorem in a~space with bilinear form},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--19},
     publisher = {mathdoc},
     number = {9},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/}
}
TY  - JOUR
AU  - E. V. Vladova
AU  - M. S. Matveichuk
TI  - A~spectral theorem in a~space with bilinear form
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 13
EP  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/
LA  - ru
ID  - IVM_2001_9_a1
ER  - 
%0 Journal Article
%A E. V. Vladova
%A M. S. Matveichuk
%T A~spectral theorem in a~space with bilinear form
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 13-19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/
%G ru
%F IVM_2001_9_a1
E. V. Vladova; M. S. Matveichuk. A~spectral theorem in a~space with bilinear form. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 13-19. http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/

[1] Lugovaya G. D., Sherstnev A. N., “O probleme lineinosti dlya neogranichennykh mer na proektorakh”, Funkts. analiz, Ulyanovsk, 1984, 76–81 | MR | Zbl

[2] Bognar J., “A proof of the spectral theorem for $J$-positive operators”, Acta Sci. Math., 45:1–4 (1983), 75–80 | MR | Zbl

[3] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986, 352 pp. | MR

[4] Matvejchuk M. S., “Unitary self-adjoint logics of projections”, Intern. J. Theor. Physics, 37:1 (1997), 103–107 | DOI | MR

[5] Patel S. M., “Operators with left inverses similar to their adjoints”, Proc. Amer. Math. Soc., 41:1 (1973), 127–131 | DOI | MR | Zbl

[6] Singh U. N., Mangla K., “Operators with inverses similar to their adjoints”, Proc. Amer. Math. Soc., 38:2 (1973), 258–260 | DOI | MR | Zbl

[7] Deprima C. R., “Remarks on: U. N. Singh and K. Mangla, Operators with inverses similar to their adjoints”, Proc. Amer. Math. Soc., 43:2 (1974), 478–480 | DOI | MR | Zbl