Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_9_a1, author = {E. V. Vladova and M. S. Matveichuk}, title = {A~spectral theorem in a~space with bilinear form}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {13--19}, publisher = {mathdoc}, number = {9}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/} }
E. V. Vladova; M. S. Matveichuk. A~spectral theorem in a~space with bilinear form. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2001), pp. 13-19. http://geodesic.mathdoc.fr/item/IVM_2001_9_a1/
[1] Lugovaya G. D., Sherstnev A. N., “O probleme lineinosti dlya neogranichennykh mer na proektorakh”, Funkts. analiz, Ulyanovsk, 1984, 76–81 | MR | Zbl
[2] Bognar J., “A proof of the spectral theorem for $J$-positive operators”, Acta Sci. Math., 45:1–4 (1983), 75–80 | MR | Zbl
[3] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986, 352 pp. | MR
[4] Matvejchuk M. S., “Unitary self-adjoint logics of projections”, Intern. J. Theor. Physics, 37:1 (1997), 103–107 | DOI | MR
[5] Patel S. M., “Operators with left inverses similar to their adjoints”, Proc. Amer. Math. Soc., 41:1 (1973), 127–131 | DOI | MR | Zbl
[6] Singh U. N., Mangla K., “Operators with inverses similar to their adjoints”, Proc. Amer. Math. Soc., 38:2 (1973), 258–260 | DOI | MR | Zbl
[7] Deprima C. R., “Remarks on: U. N. Singh and K. Mangla, Operators with inverses similar to their adjoints”, Proc. Amer. Math. Soc., 43:2 (1974), 478–480 | DOI | MR | Zbl