Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 71-78

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_8_a7,
     author = {O. V. Yakovleva},
     title = {Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$  and $(\mathbb C\setminus\{0\})^2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--78},
     publisher = {mathdoc},
     number = {8},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/}
}
TY  - JOUR
AU  - O. V. Yakovleva
TI  - Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$  and $(\mathbb C\setminus\{0\})^2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 71
EP  - 78
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/
LA  - ru
ID  - IVM_2001_8_a7
ER  - 
%0 Journal Article
%A O. V. Yakovleva
%T Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$  and $(\mathbb C\setminus\{0\})^2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 71-78
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/
%G ru
%F IVM_2001_8_a7
O. V. Yakovleva. Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$  and $(\mathbb C\setminus\{0\})^2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 71-78. http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/