Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 71-78
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_8_a7,
author = {O. V. Yakovleva},
title = {Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {71--78},
publisher = {mathdoc},
number = {8},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/}
}
TY - JOUR
AU - O. V. Yakovleva
TI - Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2001
SP - 71
EP - 78
IS - 8
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/
LA - ru
ID - IVM_2001_8_a7
ER -
%0 Journal Article
%A O. V. Yakovleva
%T Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 71-78
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/
%G ru
%F IVM_2001_8_a7
O. V. Yakovleva. Two-dimensional homology of the complement of an algebraic curve in $\mathbb C^2$ and $(\mathbb C\setminus\{0\})^2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 71-78. http://geodesic.mathdoc.fr/item/IVM_2001_8_a7/