Approximation of functions by Fourier–Bessel sums
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2001_8_a0,
author = {V. A. Abilov and F. V. Abilova},
title = {Approximation of functions by {Fourier{\textendash}Bessel} sums},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
year = {2001},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_8_a0/}
}
V. A. Abilov; F. V. Abilova. Approximation of functions by Fourier–Bessel sums. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2001), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2001_8_a0/
[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 4-e izd., Nauka, M., 1981, 512 pp. | MR
[2] Kolmogorov A. N., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1987, 470 pp. | MR
[3] Levitan B. M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (1951), 102–143 | MR | Zbl
[4] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 455 pp. | MR
[5] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970, 671 pp. | MR | Zbl
[6] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 448 pp.