Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_7_a7, author = {I. S. Shraifel' and I. M. Mal'tsev}, title = {Criteria for basic simple-connectedness and their application to the solvability of the convolution equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--64}, publisher = {mathdoc}, number = {7}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/} }
TY - JOUR AU - I. S. Shraifel' AU - I. M. Mal'tsev TI - Criteria for basic simple-connectedness and their application to the solvability of the convolution equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 57 EP - 64 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/ LA - ru ID - IVM_2001_7_a7 ER -
%0 Journal Article %A I. S. Shraifel' %A I. M. Mal'tsev %T Criteria for basic simple-connectedness and their application to the solvability of the convolution equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 57-64 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/ %G ru %F IVM_2001_7_a7
I. S. Shraifel'; I. M. Mal'tsev. Criteria for basic simple-connectedness and their application to the solvability of the convolution equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 57-64. http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/
[1] Martineau E., “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163:1 (1966), 62–88 | DOI | MR | Zbl
[2] Korobeinik Yu. F., “Ob epimorfizme operatora svertki v nekotorykh prostranstvakh analiticheskikh funktsii”, Dokl. RAN, 335:6 (1994), 691–693 | MR | Zbl
[3] Korobeinik Yu. F., “O razreshimosti uravneniya svertki v nekotorykh klassakh analiticheskikh funktsii”, Matem. zametki, 49:2 (1991), 74–83 | MR
[4] Napalkov V. V., Rudakov I. A., “Operator svertki v prostranstvakh veschestvenno-analiticheskikh funktsii”, Matem. zametki, 49:3 (1991), 57–65 | MR | Zbl
[5] Maltsev I. M., “Epimorfnost operatora svertki v prostranstvakh funktsii, analiticheskikh na svyaznykh mnozhestvakh”, Dokl. RAN, 336:3 (1994), 297–300 | MR
[6] Maltsev I. M., “Ob usloviyakh epimorfnosti operatora svertki v kompleksnoi oblasti. I: Neobkhodimye usloviya epimorfnosti”, Izv. vuzov. Matematika, 1994, no. 7, 49–58 | MR
[7] Maltsev I. M., “Ob usloviyakh epimorfnosti operatora svertki v kompleksnoi oblasti. II: Dostatochnye usloviya i kriterii epimorfnosti”, Izv. vuzov. Matematika, 1994, no. 11, 43–52 | MR
[8] Korobeinik Yu. F., “Schetnaya opredelimost semeistva oblastei, soderzhaschikh svyaznoe mnozhestvo. Prilozheniya k prostranstvam analiticheskikh rostkov”, Dokl. RAN, 354:3 (1997), 304–306 | MR | Zbl
[9] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR
[10] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969, 624 pp. | MR
[11] Markushevich A. I., Teoriya analiticheskikh funktsii, Gostekhizdat, M., 1950, 703 pp.