Criteria for basic simple-connectedness and their application to the solvability of the convolution equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_7_a7,
     author = {I. S. Shraifel' and I. M. Mal'tsev},
     title = {Criteria for basic simple-connectedness and their application to the solvability of the convolution equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--64},
     publisher = {mathdoc},
     number = {7},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/}
}
TY  - JOUR
AU  - I. S. Shraifel'
AU  - I. M. Mal'tsev
TI  - Criteria for basic simple-connectedness and their application to the solvability of the convolution equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 57
EP  - 64
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/
LA  - ru
ID  - IVM_2001_7_a7
ER  - 
%0 Journal Article
%A I. S. Shraifel'
%A I. M. Mal'tsev
%T Criteria for basic simple-connectedness and their application to the solvability of the convolution equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 57-64
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/
%G ru
%F IVM_2001_7_a7
I. S. Shraifel'; I. M. Mal'tsev. Criteria for basic simple-connectedness and their application to the solvability of the convolution equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 57-64. http://geodesic.mathdoc.fr/item/IVM_2001_7_a7/

[1] Martineau E., “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163:1 (1966), 62–88 | DOI | MR | Zbl

[2] Korobeinik Yu. F., “Ob epimorfizme operatora svertki v nekotorykh prostranstvakh analiticheskikh funktsii”, Dokl. RAN, 335:6 (1994), 691–693 | MR | Zbl

[3] Korobeinik Yu. F., “O razreshimosti uravneniya svertki v nekotorykh klassakh analiticheskikh funktsii”, Matem. zametki, 49:2 (1991), 74–83 | MR

[4] Napalkov V. V., Rudakov I. A., “Operator svertki v prostranstvakh veschestvenno-analiticheskikh funktsii”, Matem. zametki, 49:3 (1991), 57–65 | MR | Zbl

[5] Maltsev I. M., “Epimorfnost operatora svertki v prostranstvakh funktsii, analiticheskikh na svyaznykh mnozhestvakh”, Dokl. RAN, 336:3 (1994), 297–300 | MR

[6] Maltsev I. M., “Ob usloviyakh epimorfnosti operatora svertki v kompleksnoi oblasti. I: Neobkhodimye usloviya epimorfnosti”, Izv. vuzov. Matematika, 1994, no. 7, 49–58 | MR

[7] Maltsev I. M., “Ob usloviyakh epimorfnosti operatora svertki v kompleksnoi oblasti. II: Dostatochnye usloviya i kriterii epimorfnosti”, Izv. vuzov. Matematika, 1994, no. 11, 43–52 | MR

[8] Korobeinik Yu. F., “Schetnaya opredelimost semeistva oblastei, soderzhaschikh svyaznoe mnozhestvo. Prilozheniya k prostranstvam analiticheskikh rostkov”, Dokl. RAN, 354:3 (1997), 304–306 | MR | Zbl

[9] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR

[10] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969, 624 pp. | MR

[11] Markushevich A. I., Teoriya analiticheskikh funktsii, Gostekhizdat, M., 1950, 703 pp.