A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_7_a4,
     author = {M. E. Polyakov},
     title = {A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--42},
     publisher = {mathdoc},
     number = {7},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/}
}
TY  - JOUR
AU  - M. E. Polyakov
TI  - A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 32
EP  - 42
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/
LA  - ru
ID  - IVM_2001_7_a4
ER  - 
%0 Journal Article
%A M. E. Polyakov
%T A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 32-42
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/
%G ru
%F IVM_2001_7_a4
M. E. Polyakov. A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 32-42. http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/

[1] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989, 464 pp. | MR

[2] Helemskii A. Ya., “A description of spatially projective von Neumann algebras”, J. Operator Theory, 32 (1994), 391–398 | MR

[3] Helemskii A. Ya., “Projective homological classification of $\mathrm{C}^*$-algebras”, Comm. in Algebra, 26:3 (1998), 977–996 | DOI | MR

[4] Rickart C. E., General Theory of Banach algebras, Van Nostrand, New York, 1960, 394 pp. | MR | Zbl

[5] Tabaldyev S. B., “The Sobolev algebra and indecomposable spatially projective algebras”, Topological Homology, Helemskii's Moscow Seminar, Nova Science Publishers Inc., Huntington, N. Y., 2000, 201–210 | MR | Zbl

[6] Helemskii A. Ya., “Description of spatially projective operator $\mathrm{C}^*$-algebras, and around it”, Banach Algebras 97, Proc. of the 13th International Conference on Banach Algebras. Offprint, Walter de Gruyter, Berlin, 1998, 261–272 | MR | Zbl

[7] Golovin Yu. O., “Svoistvo prostranstvennoi proektivnosti v klasse $CSL$-algebr s atomnym kommutantom”, Fundament. i prikl. matem., 1:1 (1995), 147–159 | MR | Zbl

[8] Helemskii A. Ya., “Wedderburn type theorems for operator algebras and modules: traditional and “quantized” homological approaches”, Topological Homology, Helemskii's Moscow Seminar, Nova Science Publisher Inc., Huntington, N. Y., 2000, 57–92 | MR | Zbl