Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_7_a4, author = {M. E. Polyakov}, title = {A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--42}, publisher = {mathdoc}, number = {7}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/} }
TY - JOUR AU - M. E. Polyakov TI - A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 32 EP - 42 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/ LA - ru ID - IVM_2001_7_a4 ER -
M. E. Polyakov. A~criterion for the spatial projectivity of operator algebras possessing a~canonical representation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2001), pp. 32-42. http://geodesic.mathdoc.fr/item/IVM_2001_7_a4/
[1] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989, 464 pp. | MR
[2] Helemskii A. Ya., “A description of spatially projective von Neumann algebras”, J. Operator Theory, 32 (1994), 391–398 | MR
[3] Helemskii A. Ya., “Projective homological classification of $\mathrm{C}^*$-algebras”, Comm. in Algebra, 26:3 (1998), 977–996 | DOI | MR
[4] Rickart C. E., General Theory of Banach algebras, Van Nostrand, New York, 1960, 394 pp. | MR | Zbl
[5] Tabaldyev S. B., “The Sobolev algebra and indecomposable spatially projective algebras”, Topological Homology, Helemskii's Moscow Seminar, Nova Science Publishers Inc., Huntington, N. Y., 2000, 201–210 | MR | Zbl
[6] Helemskii A. Ya., “Description of spatially projective operator $\mathrm{C}^*$-algebras, and around it”, Banach Algebras 97, Proc. of the 13th International Conference on Banach Algebras. Offprint, Walter de Gruyter, Berlin, 1998, 261–272 | MR | Zbl
[7] Golovin Yu. O., “Svoistvo prostranstvennoi proektivnosti v klasse $CSL$-algebr s atomnym kommutantom”, Fundament. i prikl. matem., 1:1 (1995), 147–159 | MR | Zbl
[8] Helemskii A. Ya., “Wedderburn type theorems for operator algebras and modules: traditional and “quantized” homological approaches”, Topological Homology, Helemskii's Moscow Seminar, Nova Science Publisher Inc., Huntington, N. Y., 2000, 57–92 | MR | Zbl