A~two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2001), pp. 36-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_5_a4,
     author = {L. A. Krukier and L. G. Chikina},
     title = {A~two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--42},
     publisher = {mathdoc},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_5_a4/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - L. G. Chikina
TI  - A~two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 36
EP  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_5_a4/
LA  - ru
ID  - IVM_2001_5_a4
ER  - 
%0 Journal Article
%A L. A. Krukier
%A L. G. Chikina
%T A~two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 36-42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_5_a4/
%G ru
%F IVM_2001_5_a4
L. A. Krukier; L. G. Chikina. A~two-cycle triangular skew-symmetric iterative method for solving strongly asymmetric systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2001), pp. 36-42. http://geodesic.mathdoc.fr/item/IVM_2001_5_a4/

[1] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Ucheb. posobie, Nauka, M., 1978, 590 pp. | MR

[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR

[3] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl

[4] Krukier L. A., “Matematicheskoe modelirovanie gidrodinamiki Azovskogo morya pri realizatsii proektov rekonstruktsii ego ekosistemy”, Matem. modelir., 3:9 (1991), 3–20 | MR

[5] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 37:11 (1997), 1283–1293 | MR | Zbl

[6] Krukier L. A., Chikina L. G., “Reshenie statsionarnogo uravneniya konvektsii-diffuzii v neszhimaemykh sredakh s preobladayuschei konvektsiei iteratsionnymi metodami”, Primenenie matematicheskogo modelirovaniya dlya resheniya zadach v nauke i tekhnike, Sb. tr. Mezhdunarodn. konf., IMM, IPM UrO RAN, Izhevsk, 1996, 190–201

[7] Chikina L. G., “Ob odnom metode resheniya uravneniya konvektsii-diffuzii s preobladayuschei konvektsiei”, Matem. modelir., 9:2 (1997), 25–30 | MR | Zbl

[8] Chikina L. G., “Dvutsiklicheskie treugolnye kososimmetricheskie iteratsionnye metody resheniya silno nesimmetrichnykh sistem”, Tez. dokl. na shkole-seminare “Aktualnye problemy matematicheskogo modelirovaniya”, Izd-vo RGU, Abrau-Dyurso, 1997, 155–159

[9] Krukier L. A., “Dostatochnoe uslovie skhodimosti treugolnogo iteratsionnogo metoda s nesamosopryazhennym iskhodnym operatorom”, Izv. Severo-Kavkazsk. nauchn. tsentra vyssh. shkoly. est. nauk, 1989, no. 4, 52–54 | MR | Zbl

[10] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp. | MR

[11] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR