Methods for solving a~linear integral equation with a~kernel having fixed singularities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2001), pp. 12-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_5_a1,
     author = {N. S. Gabbasov},
     title = {Methods for solving a~linear integral equation with a~kernel having fixed singularities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--20},
     publisher = {mathdoc},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_5_a1/}
}
TY  - JOUR
AU  - N. S. Gabbasov
TI  - Methods for solving a~linear integral equation with a~kernel having fixed singularities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 12
EP  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_5_a1/
LA  - ru
ID  - IVM_2001_5_a1
ER  - 
%0 Journal Article
%A N. S. Gabbasov
%T Methods for solving a~linear integral equation with a~kernel having fixed singularities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 12-20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_5_a1/
%G ru
%F IVM_2001_5_a1
N. S. Gabbasov. Methods for solving a~linear integral equation with a~kernel having fixed singularities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2001), pp. 12-20. http://geodesic.mathdoc.fr/item/IVM_2001_5_a1/

[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978, 351 pp. | MR

[2] Vekua N. P., “Integralnye uravneniya tipa Fredgolma s integralom v smysle Adamara”, Tr. Matem. in-ta AN Gruz SSR, 7, Tbilisi, 1940, 113–148

[3] Bzhikhatlov Kh. G., “Ob odnoi smeshannoi kraevoi zadache dlya uravneniya parabolo-giperbolicheskogo tipa”, Sb. nauchn. rabot aspirantov, no. 3, Nalchik, 1971, 7–9

[4] Bzhikhatlov Kh. G., “Ob odnoi kraevoi zadache so smescheniem”, Differents. uravneniya, 9:1 (1973), 162–165

[5] Raslambekov S. N., Teoriya lineinykh integralnykh uravnenii tretego roda v klassakh obobschennykh funktsii i drugikh funktsionalnykh prostranstvakh, Diss. ...kand. fiz.-matem. nauk, Rostov-na-Donu, 1987, 99 pp.

[6] Gabbasov N. S., “Optimalnyi proektsionnyi metod resheniya odnogo klassa integralnykh uravnenii”, Differents. uravneniya, 30:2 (1994), 333–335 | MR | Zbl

[7] Gabbasov N. S., “Metody resheniya odnogo klassa integralnykh uravnenii III roda”, Izv. vuzov. Matematika, 1996, no. 5, 19–28 | MR

[8] Gabbasov N. S., “K teorii lineinykh integralnykh uravnenii tretego roda”, Differents. uravneniya, 32:9 (1996), 1192–1201 | MR | Zbl

[9] Gabbasov N. S., Metody resheniya integralnykh uravnenii Fredgolma v prostranstvakh obobschennykh funktsii, Dis. ...dokt. fiz.-matem. nauk, Novosibirsk, 1996, 318 pp.

[10] Gabbasov N. S., “Optimalnyi metod resheniya integralnykh uravnenii tretego roda”, Dokl. RAN, 362:1 (1998), 12–15 | MR | Zbl

[11] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR

[12] Presdorf Z., “Singulyarnoe integralnoe uravnenie s simvolom, obraschayuschimsya v nul v konechnom chisle tochek”, Matem. issledovaniya, 7, No 1, Kishinev, 1972, 116–132 | MR | Zbl

[13] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, Gostekhizdat, M., 1954, 328 pp.

[14] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningradsk. un-ta, L., 1977, 184 pp. | MR | Zbl

[15] Gabdulkhaev B. G., “Nekotorye voprosy priblizhennykh metodov”, Uchen. zap. Kazansk. un-ta, Kn. 128, no. 5, 1968, 20–29

[16] Ermolaeva L. B., Approksimativnye svoistva polinomialnykh operatorov i reshenie integralnykh i integrodifferentsialnykh uravnenii metodom podoblastei, Diss. ...kand. fiz.-matem. nauk, Kazan, 1987, 137 pp. | Zbl