On the application of degree theory to the study of an oblique derivative problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a7,
     author = {N. M. Ratiner},
     title = {On the application of degree theory to the study of an oblique derivative problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--52},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a7/}
}
TY  - JOUR
AU  - N. M. Ratiner
TI  - On the application of degree theory to the study of an oblique derivative problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 43
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a7/
LA  - ru
ID  - IVM_2001_4_a7
ER  - 
%0 Journal Article
%A N. M. Ratiner
%T On the application of degree theory to the study of an oblique derivative problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 43-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a7/
%G ru
%F IVM_2001_4_a7
N. M. Ratiner. On the application of degree theory to the study of an oblique derivative problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 43-52. http://geodesic.mathdoc.fr/item/IVM_2001_4_a7/

[1] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977, 232 pp. | MR | Zbl

[2] Nirenberg L., “An application of generalized degree to a class of nonlinear elliptic equations”, J. Anal. Math., 37 (1980), 248–275 | DOI

[3] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 379 pp. | MR

[4] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 463 pp. | MR | Zbl

[5] Zvyagin V. G., Ratiner N. M., “Stepen vpolne nepreryvnykh vozmuschenii fredgolmovykh otobrazhenii i ee prilozhenie k bifurkatsii reshenii”, DAN USSR. Ser. A, 1989, no. 6, 8–11 | MR | Zbl

[6] Zvyagin V. G., Ratiner N. M., “Orientirovannaya stepen fredgolmovykh otobrazhenii neotritsatelnogo indeksa i ee prilozheniya k zadache o globalnoi bifurkatsii reshenii”, Algebr. vopr. analiza i topologii. Novoe v globalnom analize, Voronezh, 1990, 3–17 | MR | Zbl

[7] Zvyagin V. G., Ratiner N. M., “Oriented degree of Fredholm maps of non-negative index and its application to global bifurcation of solutions”, Lect. Notes Math., 1520, 1992, 111–137 | MR

[8] Ratiner N. M., “O $C^0$ otsenkakh dlya nelineinykh ellipticheskikh uravnenii”, Tr. matem. f-ta Voronezh. un-ta, 1996, 72–75

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 538 pp. | MR

[10] Nirenberg L., “Nekotorye voprosy teorii lineinykh i nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, UMN, 18:4 (1963), 101–118 | MR | Zbl

[11] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[12] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Ergeb. Math., 92, no. XIII, 1977, 190 pp. | MR | Zbl