On the definability of finite algebras by derived categories
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 38-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a6,
     author = {A. G. Pinus},
     title = {On the definability of finite algebras by derived categories},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--42},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a6/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On the definability of finite algebras by derived categories
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 38
EP  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a6/
LA  - ru
ID  - IVM_2001_4_a6
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On the definability of finite algebras by derived categories
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 38-42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a6/
%G ru
%F IVM_2001_4_a6
A. G. Pinus. On the definability of finite algebras by derived categories. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 38-42. http://geodesic.mathdoc.fr/item/IVM_2001_4_a6/

[1] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 452 pp. | MR

[2] Pinus A. G., “Ischislenie uslovnykh tozhdestv i uslovno ratsionalnaya ekvivalentnost”, Algebra i logika, 37:4 (1998), 432–459 | MR | Zbl

[3] Khobbi D., MakKenzi R., Stroenie konechnykh algebr, Mir, M., 1993, 286 pp. | MR

[4] McKenzie R., “An algebraic version of categorical equivalence for varieties and more general algebraic categories”, Logic and algebra, Proc. of the Int. Conf. dedicated to the memory of R. Magari, Marcel Dekker Lect. Notes Pure Appl. Math., 180, 1996, 211–243 | MR | Zbl