The tensor product of abelian groups as a~Noetherian module over an endomorphism ring
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a2,
     author = {M. V. Eremina and P. A. Krylov},
     title = {The tensor product of abelian groups as {a~Noetherian} module over an endomorphism ring},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--23},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a2/}
}
TY  - JOUR
AU  - M. V. Eremina
AU  - P. A. Krylov
TI  - The tensor product of abelian groups as a~Noetherian module over an endomorphism ring
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 16
EP  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a2/
LA  - ru
ID  - IVM_2001_4_a2
ER  - 
%0 Journal Article
%A M. V. Eremina
%A P. A. Krylov
%T The tensor product of abelian groups as a~Noetherian module over an endomorphism ring
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 16-23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a2/
%G ru
%F IVM_2001_4_a2
M. V. Eremina; P. A. Krylov. The tensor product of abelian groups as a~Noetherian module over an endomorphism ring. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 16-23. http://geodesic.mathdoc.fr/item/IVM_2001_4_a2/

[1] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974, 335 pp.

[2] Markov V. T., Mikhalev A. V., Skornyakov L. A., Tuganbaev A. A., “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhn. Algebra. Topologiya. Geometriya, 21, VINITI, M., 1983, 183–254

[3] Lambek I., Koltsa i moduli, Mir, M., 1971, 279 pp. | MR | Zbl

[4] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977, 688 pp.

[5] Paras A. T., “Abelian groups as Noetherian modules over their endomorphism rings”, Contem. Math., 171 (1994), 325–332 | MR | Zbl

[6] Krylov P. A., “Abelevy gruppy bez krucheniya kak moduli nad svoimi koltsami endomorfizmov”, Abel. gruppy i moduli, Tomsk, 1996, 77–104 | Zbl

[7] Krylov P. A., Podberezina E. I., “Gruppa $\mathrm{Hom}(A, B)$ kak artinov $E(B)$-modul”, Abel. gruppy i moduli, Tomsk, 1996, 170–184 | Zbl

[8] Arnold D. M., Finite rank torsion free Abelian groups and rings, Lect. Notes Math., 931, 1982, 191 pp. | MR | Zbl

[9] Warfield R. B., Jr., “The structure of mixed Abelian groups”, Abelian Groups Theory, Lecture Notes Math., 616, 1977, 1–38 | MR | Zbl

[10] Eremina M. V., Krylov P. A., “K voprosu ob artinovosti $E(A)$-modulya $A\otimes C$”, Issledov. po matem. analizu i algebre, Tomsk, 1998, 158–164

[11] Krylov P. A., Podberezina E. I., “Gruppa $\mathrm{Hom}(A, B)$ kak neterov modul nad koltsom endomorfizmov gruppy $A$”, Issledov. po matem. analizu i algebre, Tomsk, 2000, 63–76

[12] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1365–1384 | MR | Zbl