The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a14,
     author = {R. B. Salimov and P. L. Shabalin},
     title = {The regularizing factor method for solving a~homogeneous {Hilbert} problem with an infinite index},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--79},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - P. L. Shabalin
TI  - The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 76
EP  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/
LA  - ru
ID  - IVM_2001_4_a14
ER  - 
%0 Journal Article
%A R. B. Salimov
%A P. L. Shabalin
%T The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 76-79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/
%G ru
%F IVM_2001_4_a14
R. B. Salimov; P. L. Shabalin. The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 76-79. http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/

[1] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1974, no. 6, 16–23 | MR

[2] Alekna P. Yu., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. sb., 1977, no. 1, 5–12 | MR | Zbl

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968, 511 pp. | MR

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[5] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986, 239 pp. | MR | Zbl

[6] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977, 303 pp.

[7] Chibrikova L. I., Salekhov L. G., “K resheniyu kraevoi zadachi Gilberta”, Tr. semin. po kraev. zadacham, 8, Kazan, 1971, 155–175 | Zbl

[8] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Tr. semin. po kraev. zadacham, 16, Kazan, 1979, 149–162 | MR | Zbl

[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.

[10] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968, 624 pp. | Zbl