Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_4_a14, author = {R. B. Salimov and P. L. Shabalin}, title = {The regularizing factor method for solving a~homogeneous {Hilbert} problem with an infinite index}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--79}, publisher = {mathdoc}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/} }
TY - JOUR AU - R. B. Salimov AU - P. L. Shabalin TI - The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 76 EP - 79 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/ LA - ru ID - IVM_2001_4_a14 ER -
%0 Journal Article %A R. B. Salimov %A P. L. Shabalin %T The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 76-79 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/ %G ru %F IVM_2001_4_a14
R. B. Salimov; P. L. Shabalin. The regularizing factor method for solving a~homogeneous Hilbert problem with an infinite index. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 76-79. http://geodesic.mathdoc.fr/item/IVM_2001_4_a14/
[1] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1974, no. 6, 16–23 | MR
[2] Alekna P. Yu., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. sb., 1977, no. 1, 5–12 | MR | Zbl
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968, 511 pp. | MR
[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[5] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986, 239 pp. | MR | Zbl
[6] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977, 303 pp.
[7] Chibrikova L. I., Salekhov L. G., “K resheniyu kraevoi zadachi Gilberta”, Tr. semin. po kraev. zadacham, 8, Kazan, 1971, 155–175 | Zbl
[8] Salimov R. B., Seleznev V. V., “K resheniyu kraevoi zadachi Gilberta s razryvnymi koeffitsientami”, Tr. semin. po kraev. zadacham, 16, Kazan, 1979, 149–162 | MR | Zbl
[9] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.
[10] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968, 624 pp. | Zbl