A~local two-radii theorem for $\mathcal M$-harmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 65-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a11,
     author = {Vit. V. Volchkov},
     title = {A~local two-radii theorem for $\mathcal M$-harmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--68},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a11/}
}
TY  - JOUR
AU  - Vit. V. Volchkov
TI  - A~local two-radii theorem for $\mathcal M$-harmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 65
EP  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a11/
LA  - ru
ID  - IVM_2001_4_a11
ER  - 
%0 Journal Article
%A Vit. V. Volchkov
%T A~local two-radii theorem for $\mathcal M$-harmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 65-68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a11/
%G ru
%F IVM_2001_4_a11
Vit. V. Volchkov. A~local two-radii theorem for $\mathcal M$-harmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 65-68. http://geodesic.mathdoc.fr/item/IVM_2001_4_a11/

[1] Delsarte J., “Note sur une propriete nouvelle des fonctions hormoniques”, C.R. Acad. Sci. Paris Ser. A–B, 246:9 (1958), 1358–1360 | MR | Zbl

[2] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovremen. probl. matem., 54, 1989, 5–111 | MR

[3] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approxim. solutions of partial different. equat., 1992, 185–194 | MR | Zbl

[4] Netuka I., Vesely J., “Mean value property and harmonic functions”, Classical and Modern potential Theory and Applications, 1994, 359–398 | MR | Zbl

[5] Volchkov V. V., “Okonchatelnyi variant teoremy o srednem v teorii garmonicheskikh funktsii”, Matem. zametki, 59:3 (1996), 351–358 | MR | Zbl

[6] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267–288 | DOI | MR | Zbl

[7] Volchkov V. V., “Teoremy o dvukh radiusakh na ogranichennykh oblastyakh evklidovykh prostranstv”, Differents. uravneniya, 30:10 (1994), 1719–1724 | MR | Zbl

[8] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987, 735 pp. | MR

[9] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[10] Volchkov V. V., “Problemy tipa Pompeiyu na mnogoobraziyakh”, Dokl. AN Ukrainy, 1993, no. 11, 9–12 | MR

[11] Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complete”, J. Anal. Math., 67 (1995), 1–37 | DOI | MR | Zbl

[12] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984, 455 pp. | MR | Zbl

[13] Volchkov Vit. V., “O funktsiyakh s nulevymi sharovymi srednimi na kompleksnykh giperbolicheskikh prostranstvakh”, Matem. zametki, 68:4 (2000), 504–512 | MR | Zbl