Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_4_a10, author = {L. V. Veselova and O. E. Tikhonov}, title = {On the uniqueness of the solution of inverse interpolation problems for classes of operators}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {62--64}, publisher = {mathdoc}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/} }
TY - JOUR AU - L. V. Veselova AU - O. E. Tikhonov TI - On the uniqueness of the solution of inverse interpolation problems for classes of operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 62 EP - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/ LA - ru ID - IVM_2001_4_a10 ER -
%0 Journal Article %A L. V. Veselova %A O. E. Tikhonov %T On the uniqueness of the solution of inverse interpolation problems for classes of operators %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 62-64 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/ %G ru %F IVM_2001_4_a10
L. V. Veselova; O. E. Tikhonov. On the uniqueness of the solution of inverse interpolation problems for classes of operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 62-64. http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/
[1] Tikhonov O. E., Veselova L. V., “A Banach couple is determined by the collection of its interpolation spaces”, Proc. Amer. Math. Soc., 126:4 (1998), 1049–1054 | DOI | MR | Zbl
[2] Tikhonov O. E., Veselova L. V., “The uniqueness of the solution to the inverse problem of exact interpolation”, Israel Math. Conf. Proc., 13, 1999, 209–215 | MR | Zbl
[3] Veselova L. V., Tikhonov O. E., O edinstvennosti resheniya obratnykh zadach interpolyatsii, Preprint NIIMM No 95-2, Kazansk. fond “Matematika”, Kazan, 1995, 17 pp.
[4] Brudnyi Yu. A., Krein S. G., Semenov E. M., “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhn. Matem. analiz, 24, VINITI, M., 1986, 3–163 | MR
[5] Ovchinnikov V. I., “The method of orbits in interpolation theory”, Math. Rept., 1 (1984), 349–515 | MR | Zbl
[6] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR
[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979, 243 pp. | MR
[8] Lozanovskii G. Ya., “Zamechanie ob odnoi interpolyatsionnoi teoreme Kalderona”, Funkts. analiz i ego prilozh., 6:4 (1972), 89–90 | MR | Zbl