On the uniqueness of the solution of inverse interpolation problems for classes of operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 62-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_4_a10,
     author = {L. V. Veselova and O. E. Tikhonov},
     title = {On the uniqueness of the solution of inverse interpolation problems for classes of operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--64},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/}
}
TY  - JOUR
AU  - L. V. Veselova
AU  - O. E. Tikhonov
TI  - On the uniqueness of the solution of inverse interpolation problems for classes of operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 62
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/
LA  - ru
ID  - IVM_2001_4_a10
ER  - 
%0 Journal Article
%A L. V. Veselova
%A O. E. Tikhonov
%T On the uniqueness of the solution of inverse interpolation problems for classes of operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 62-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/
%G ru
%F IVM_2001_4_a10
L. V. Veselova; O. E. Tikhonov. On the uniqueness of the solution of inverse interpolation problems for classes of operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2001), pp. 62-64. http://geodesic.mathdoc.fr/item/IVM_2001_4_a10/

[1] Tikhonov O. E., Veselova L. V., “A Banach couple is determined by the collection of its interpolation spaces”, Proc. Amer. Math. Soc., 126:4 (1998), 1049–1054 | DOI | MR | Zbl

[2] Tikhonov O. E., Veselova L. V., “The uniqueness of the solution to the inverse problem of exact interpolation”, Israel Math. Conf. Proc., 13, 1999, 209–215 | MR | Zbl

[3] Veselova L. V., Tikhonov O. E., O edinstvennosti resheniya obratnykh zadach interpolyatsii, Preprint NIIMM No 95-2, Kazansk. fond “Matematika”, Kazan, 1995, 17 pp.

[4] Brudnyi Yu. A., Krein S. G., Semenov E. M., “Interpolyatsiya lineinykh operatorov”, Itogi nauki i tekhn. Matem. analiz, 24, VINITI, M., 1986, 3–163 | MR

[5] Ovchinnikov V. I., “The method of orbits in interpolation theory”, Math. Rept., 1 (1984), 349–515 | MR | Zbl

[6] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979, 243 pp. | MR

[8] Lozanovskii G. Ya., “Zamechanie ob odnoi interpolyatsionnoi teoreme Kalderona”, Funkts. analiz i ego prilozh., 6:4 (1972), 89–90 | MR | Zbl