Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_3_a8, author = {E. N. Sosov}, title = {On the continuity and connectedness of the metric $\delta$-projection in a~uniformly convex geodesic space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--59}, publisher = {mathdoc}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a8/} }
TY - JOUR AU - E. N. Sosov TI - On the continuity and connectedness of the metric $\delta$-projection in a~uniformly convex geodesic space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 55 EP - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_3_a8/ LA - ru ID - IVM_2001_3_a8 ER -
E. N. Sosov. On the continuity and connectedness of the metric $\delta$-projection in a~uniformly convex geodesic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 55-59. http://geodesic.mathdoc.fr/item/IVM_2001_3_a8/
[1] Vlasov L. P., “Chebyshevskie mnozhestva i nekotorye ikh obobscheniya”, Matem. zametki, 3:1 (1968), 59–69 | MR | Zbl
[2] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[3] Marinov A. V., “Nepreryvnost i svyaznost metricheskoi $\delta$-proektsii”, Approksimatsiya v konkret. i abstrakt. banakhov. prostranstvakh, Sverdlovsk, 1987, 82–95 | MR | Zbl
[4] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR
[5] Efremovich V. A., “Neekvimorfnost prostranstv Evklida i Lobachevskogo”, UMN, 4:2 (1949), 178–179
[6] Sosov E. N., “Ob approksimativnykh svoistvakh mnozhestv v spetsialnykh metricheskikh prostranstvakh”, Izv. vuzov. Matematika, 1999, no. 6, 81–84 | MR | Zbl