On the geodesic flow on a~spherical tangent bundle of a~two-dimensional manifold with the Sasaki metric
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_3_a5,
     author = {S. G. Leiko},
     title = {On the geodesic flow on a~spherical tangent bundle of a~two-dimensional manifold with the {Sasaki} metric},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--38},
     publisher = {mathdoc},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a5/}
}
TY  - JOUR
AU  - S. G. Leiko
TI  - On the geodesic flow on a~spherical tangent bundle of a~two-dimensional manifold with the Sasaki metric
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 33
EP  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_3_a5/
LA  - ru
ID  - IVM_2001_3_a5
ER  - 
%0 Journal Article
%A S. G. Leiko
%T On the geodesic flow on a~spherical tangent bundle of a~two-dimensional manifold with the Sasaki metric
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 33-38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_3_a5/
%G ru
%F IVM_2001_3_a5
S. G. Leiko. On the geodesic flow on a~spherical tangent bundle of a~two-dimensional manifold with the Sasaki metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 33-38. http://geodesic.mathdoc.fr/item/IVM_2001_3_a5/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988, 413 pp. | MR | Zbl

[2] Trofimov V. V., Fomenko A. T., Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995, 448 pp. | MR | Zbl

[3] Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, Ch. 1, no. 25, Izd-vo MGU, M., 1993, 127 pp.

[4] Trudy seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, Ch. 2, no. 25, Izd-vo MGU, M., 1993, 151 pp.

[5] Leiko S. G., “Variatsionnye zadachi dlya funktsionalov povorota i spin-otobrazheniya psevdorimanovykh prostranstv”, Izv. vuzov. Matematika, 1990, no. 10, 9–17 | MR

[6] Leiko S. G., “Povorotnye diffeomorfizmy na poverkhnostyakh evklidova prostranstva”, Matem. zametki, 47:3 (1990), 52–57 | MR

[7] Leiko S. G., “Ekstremali funktsionalov povorota krivykh psevdorimanova prostranstva i traektorii spin-chastits v gravitatsionnykh polyakh”, Dokl. RAN, 325:4 (1992), 659–663

[8] Leiko S. G., “Izoperimetricheskie ekstremali povorota na poverkhnostyakh v evklidovom prostranstve $E^3$”, Izv. vuzov. Matematika, 1996, no. 6, 25–32 | MR | Zbl

[9] Leiko S. G., “Mekhanicheskaya interpretatsiya izoperimetricheskikh ekstremalei povorota na poverkhnostyakh”, Vicnik Odesk. derzh. un-tu, 4:4 (1999), 102–105

[10] Nagy P., “On the tangent sphere bundle of Riemannian $2$-manifold”, Tôhoku Mat. J., 29 (1977), 203–208 | DOI | MR | Zbl

[11] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds, 1”, Tôhoku Mat. J., 10 (1958), 338–354 | DOI | MR | Zbl

[12] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds, 2”, Tôhoku Mat. J., 14 (1962), 146–155 | DOI | MR | Zbl

[13] Blyashke V., Differentsialnaya geometriya, ONTI-NKTP SSSR, M.–L., 1935, 332 pp.

[14] Kagan V. F., Osnovy teorii poverkhnostei v tenzornom izlozhenii. Apparat issledovaniya, obschie osnovaniya teorii i vnutrennyaya geometriya poverkhnosti, Ch. 1, GITTL, M.–L., 1947, 512 pp. | MR