On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_3_a4,
     author = {R. N. Guzeev and A. V. Loboda},
     title = {On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--32},
     publisher = {mathdoc},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/}
}
TY  - JOUR
AU  - R. N. Guzeev
AU  - A. V. Loboda
TI  - On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 25
EP  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/
LA  - ru
ID  - IVM_2001_3_a4
ER  - 
%0 Journal Article
%A R. N. Guzeev
%A A. V. Loboda
%T On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 25-32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/
%G ru
%F IVM_2001_3_a4
R. N. Guzeev; A. V. Loboda. On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 25-32. http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/

[1] Nomizu K., Sasaki T., “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl

[2] Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the $3$-dimensional affine geometry, Prepr. Ser. Pure Math. Inst. Math. Univ., No 41, Oslo, 1995, 26 pp.

[3] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl

[4] Loboda A. V., “O klassifikatsii affinno-odnorodnykh poverkhnostei prostranstva $\mathbb{R}^3$ v terminakh ikh normalnykh uravnenii”, Pontryaginskie chteniya-IX, Tez. dokl., Voronezh, 1998, 92

[5] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959, 319 pp. | MR | Zbl

[6] Beloshapka V. K., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^2$”, Matem. zametki, 60:5 (1996), 760–764 | MR | Zbl