Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_3_a4, author = {R. N. Guzeev and A. V. Loboda}, title = {On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {25--32}, publisher = {mathdoc}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/} }
TY - JOUR AU - R. N. Guzeev AU - A. V. Loboda TI - On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 25 EP - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/ LA - ru ID - IVM_2001_3_a4 ER -
R. N. Guzeev; A. V. Loboda. On normal equations of affinely homogeneous convex surfaces of the space~$\mathbb R^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 25-32. http://geodesic.mathdoc.fr/item/IVM_2001_3_a4/
[1] Nomizu K., Sasaki T., “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl
[2] Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the $3$-dimensional affine geometry, Prepr. Ser. Pure Math. Inst. Math. Univ., No 41, Oslo, 1995, 26 pp.
[3] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Matem. zametki, 59:2 (1996), 211–223 | MR | Zbl
[4] Loboda A. V., “O klassifikatsii affinno-odnorodnykh poverkhnostei prostranstva $\mathbb{R}^3$ v terminakh ikh normalnykh uravnenii”, Pontryaginskie chteniya-IX, Tez. dokl., Voronezh, 1998, 92
[5] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Fizmatlit, M., 1959, 319 pp. | MR | Zbl
[6] Beloshapka V. K., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^2$”, Matem. zametki, 60:5 (1996), 760–764 | MR | Zbl