On the $\alpha$-distribution theorem for normal manifolds of Killing type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_3_a2,
     author = {E. S. Volkova},
     title = {On the $\alpha$-distribution theorem for normal manifolds of {Killing} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--18},
     publisher = {mathdoc},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/}
}
TY  - JOUR
AU  - E. S. Volkova
TI  - On the $\alpha$-distribution theorem for normal manifolds of Killing type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 14
EP  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/
LA  - ru
ID  - IVM_2001_3_a2
ER  - 
%0 Journal Article
%A E. S. Volkova
%T On the $\alpha$-distribution theorem for normal manifolds of Killing type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 14-18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/
%G ru
%F IVM_2001_3_a2
E. S. Volkova. On the $\alpha$-distribution theorem for normal manifolds of Killing type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 14-18. http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/

[1] Kirichenko V. F., “Lokalno konformno-kelerovy mnogoobraziya postoyannoi golomorfnoi sektsionnoi krivizny”, Matem. sb., 182:3 (1991), 354–363 | MR

[2] Kirichenko V. F., “Konformno-ploskie lokalno konformno-kelerovy mnogoobraziya”, Matem. zametki, 51:5 (1992), 57–66 | MR | Zbl

[3] Vaisman I., “On locally and globally conformal Kähler manifolds”, Trans. Amer. Math. Soc., 2 (1992), 533–542 | MR

[4] Vaisman I., “On locally conformal almost Kähler manifolds”, Israel J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl

[5] Ianus S., Visinescu M., “Kaluza–Klein theory with scalar fields on generalised Hopf manifolds”, Classical Quasitum Gravity, 4:5 (1987), 1317–1325 | DOI | MR | Zbl

[6] Ikuta K., “$\alpha$-submanifolds on a locally conformal Kähler manifolds”, Math. Soc. Rep. Ochanomizu Univ., 31:1 (1980), 42–54 | MR

[7] Vaisman I., “Locally conformal Kähler manifolds with parallel Lee forms”, Rend. di Mat., 12 (1979), 268–284 | MR

[8] Kirichenko V. F., “Aksiomy $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–734 | MR | Zbl

[9] Goldberg S., Yano K., “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1980), 373–382 | MR

[10] Volkova E. S., “Tozhdestva krivizny normalnykh mnogoobrazii killingova tipa”, Matem. zametki, 62:3 (1997), 351–362 | MR | Zbl

[11] Chinea D., Marrero J. C., “Conformal changes of almost contact metric structures”, Riv. math. Univ. Parma, 1992, no. 1, 19–31 | MR | Zbl

[12] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geometrii, 18, VINITI, M., 1986, 25–71 | MR