@article{IVM_2001_3_a2,
author = {E. S. Volkova},
title = {On the $\alpha$-distribution theorem for normal manifolds of {Killing} type},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {14--18},
year = {2001},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/}
}
E. S. Volkova. On the $\alpha$-distribution theorem for normal manifolds of Killing type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2001), pp. 14-18. http://geodesic.mathdoc.fr/item/IVM_2001_3_a2/
[1] Kirichenko V. F., “Lokalno konformno-kelerovy mnogoobraziya postoyannoi golomorfnoi sektsionnoi krivizny”, Matem. sb., 182:3 (1991), 354–363 | MR
[2] Kirichenko V. F., “Konformno-ploskie lokalno konformno-kelerovy mnogoobraziya”, Matem. zametki, 51:5 (1992), 57–66 | MR | Zbl
[3] Vaisman I., “On locally and globally conformal Kähler manifolds”, Trans. Amer. Math. Soc., 2 (1992), 533–542 | MR
[4] Vaisman I., “On locally conformal almost Kähler manifolds”, Israel J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl
[5] Ianus S., Visinescu M., “Kaluza–Klein theory with scalar fields on generalised Hopf manifolds”, Classical Quasitum Gravity, 4:5 (1987), 1317–1325 | DOI | MR | Zbl
[6] Ikuta K., “$\alpha$-submanifolds on a locally conformal Kähler manifolds”, Math. Soc. Rep. Ochanomizu Univ., 31:1 (1980), 42–54 | MR
[7] Vaisman I., “Locally conformal Kähler manifolds with parallel Lee forms”, Rend. di Mat., 12 (1979), 268–284 | MR
[8] Kirichenko V. F., “Aksiomy $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 711–734 | MR | Zbl
[9] Goldberg S., Yano K., “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1980), 373–382 | MR
[10] Volkova E. S., “Tozhdestva krivizny normalnykh mnogoobrazii killingova tipa”, Matem. zametki, 62:3 (1997), 351–362 | MR | Zbl
[11] Chinea D., Marrero J. C., “Conformal changes of almost contact metric structures”, Riv. math. Univ. Parma, 1992, no. 1, 19–31 | MR | Zbl
[12] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geometrii, 18, VINITI, M., 1986, 25–71 | MR