On the theory of discontinuous solutions of variational problems in the class of generalized curves
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_2_a5,
     author = {S. F. Morozov and A. V. Semenov},
     title = {On the theory of discontinuous solutions of variational problems in the class of generalized curves},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--59},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_2_a5/}
}
TY  - JOUR
AU  - S. F. Morozov
AU  - A. V. Semenov
TI  - On the theory of discontinuous solutions of variational problems in the class of generalized curves
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 48
EP  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_2_a5/
LA  - ru
ID  - IVM_2001_2_a5
ER  - 
%0 Journal Article
%A S. F. Morozov
%A A. V. Semenov
%T On the theory of discontinuous solutions of variational problems in the class of generalized curves
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 48-59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_2_a5/
%G ru
%F IVM_2001_2_a5
S. F. Morozov; A. V. Semenov. On the theory of discontinuous solutions of variational problems in the class of generalized curves. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 48-59. http://geodesic.mathdoc.fr/item/IVM_2001_2_a5/

[1] Krotov V. F., “Razryvnye resheniya variatsionnykh zadach”, Izv. vuzov. Matematika, 1960, no. 5, 86–98 | MR | Zbl

[2] Krotov V. F., “Osnovnaya zadacha variatsionnogo ischisleniya dlya prosteishego funktsionala na sovokupnosti razryvnykh funktsii”, DAN SSSR, 137:1 (1961), 31–34 | MR | Zbl

[3] Krotov V. F., Bukreev V. V., Gurman V. I., Novye metody variatsionnogo ischisleniya v dinamike poleta, Mashinostroenie, M., 1969, 288 pp.

[4] Young L. C., “Generalized curves and the existence of an attained absolute minimum in the calculus of variations”, C.R. Sci. Letters Varsovie, 30 (1937), 212–234 | Zbl

[5] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974, 488 pp. | MR

[6] McShane E. J., “Generalized curves”, Duke Math. J., 6 (1940), 1–27 | DOI | MR

[7] Koshelev V. N., Morozov S. F., “Dostatochnye usloviya suschestvovaniya razryvnykh reshenii dlya prosteishego integrala variatsionnogo ischisleniya, I”, Izv. vuzov. Matematika, 1967, no. 11, 21–30 | MR | Zbl

[8] Koshelev V. N., Morozov S. F., “Dostatochnye usloviya suschestvovaniya razryvnykh reshenii dlya prosteishego integrala variatsionnogo ischisleniya, II”, Izv. vuzov. Matematika, 1967, no. 12, 38–46 | MR | Zbl

[9] Koshelev V. N., Morozov S. F., “O neobkhodimykh usloviyakh ekstremuma variatsionnykh zadach v neparametricheskoi forme na sovokupnosti razryvnykh funktsii”, Izv. vuzov. Matematika, 1970, no. 12, 37–46 | MR | Zbl

[10] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[11] Khalmosh P. R., Teoriya mery, In. lit., M., 1953, 292 pp. | MR

[12] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[13] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR