Polyadic analogues of the Cayley and Birkhoff theorems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_2_a1,
     author = {A. M. Gal'mak},
     title = {Polyadic analogues of the {Cayley} and {Birkhoff} theorems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--18},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_2_a1/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Polyadic analogues of the Cayley and Birkhoff theorems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 13
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_2_a1/
LA  - ru
ID  - IVM_2001_2_a1
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Polyadic analogues of the Cayley and Birkhoff theorems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 13-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_2_a1/
%G ru
%F IVM_2001_2_a1
A. M. Gal'mak. Polyadic analogues of the Cayley and Birkhoff theorems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 13-18. http://geodesic.mathdoc.fr/item/IVM_2001_2_a1/

[1] Sioson F. M., “On free Abelian $m$-groups, I”, Proc. Japan Acad., 43 (1967), 876–879 | DOI | MR | Zbl

[2] Galmak A. M., “Translyatsii $n$-arnykh grupp”, DAN BSSR, 30:8 (1986), 677–680 | MR

[3] Rusakov S. A., Algebraicheskie $n$-arnye sistemy, Navuka i tekhnika, Minsk, 1992, 264 pp.

[4] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl

[5] Galmak A. M., “$n$-arnye morfizmy algebraicheskikh sistem”, Tez. dokl. Mezhdunarodn. matem. konf., Minsk, 1993, 11–12