Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_1_a3, author = {V. G. Zvyagin and V. T. Dmitrienko and Z. Kukharski}, title = {Topological characterization of the solution set of {Fredholm} equations with $f$-compactly contractive perturbations and its applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {36--48}, publisher = {mathdoc}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/} }
TY - JOUR AU - V. G. Zvyagin AU - V. T. Dmitrienko AU - Z. Kukharski TI - Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 36 EP - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/ LA - ru ID - IVM_2001_1_a3 ER -
%0 Journal Article %A V. G. Zvyagin %A V. T. Dmitrienko %A Z. Kukharski %T Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 36-48 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/ %G ru %F IVM_2001_1_a3
V. G. Zvyagin; V. T. Dmitrienko; Z. Kukharski. Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2001), pp. 36-48. http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/
[1] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl
[2] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Global Analysis, Proc. Sympos. Pure Math., 15, 1970, 45–94 | MR | Zbl
[3] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl
[4] Zvyagin V. G., “O suschestvovanii nepreryvnoi vetvi sobstvennykh funktsii nelineinoi ellipticheskoi kraevoi zadachi”, Differents. uravneniya, 13:8 (1977), 1524–1527 | MR | Zbl
[5] Zvyagin V. G., “Ob orientirovannoi stepeni odnogo klassa vozmuschenii fredgolmovykh otobrazhenii i bifurkatsii reshenii nelineinoi kraevoi zadachi s nekompaktnymi vozmuscheniyami”, Matem. sb., 182:12 (1991), 1740–1768 | Zbl
[6] Borisovich Yu. G., Zvyagin V. G., “Ob odnom topologicheskom printsipe razreshimosti uravnenii s fredgolmovymi operatorami”, DAN USSR, Ser. A, 1978, no. 3, 203–206 | Zbl
[7] Zvyagin V. G., “O chisle reshenii zadachi Dirikhle dlya uravnenii ellipticheskikh na mnozhestve reshenii”, Matem. zametki, 49:4 (1991), 47–54 | MR | Zbl
[8] Borisovich Yu. G., Sapronov Yu. I., “K topologicheskoi teorii kompaktno suzhaemykh otobrazhenii”, Tr. semin. po funkts. analizu, 12, Izd-vo Voronezhsk. un-ta, 1969, 43–68
[9] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl
[10] Hertzer G., “Some remarks on $\Phi_+$-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations”, Ann. Soc. Sci. Bruxelles, 89:1 (1975), 495–508 | MR