Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2001), pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_1_a3,
     author = {V. G. Zvyagin and V. T. Dmitrienko and Z. Kukharski},
     title = {Topological characterization of the solution set of {Fredholm} equations with $f$-compactly contractive perturbations and its applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--48},
     publisher = {mathdoc},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. T. Dmitrienko
AU  - Z. Kukharski
TI  - Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 36
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/
LA  - ru
ID  - IVM_2001_1_a3
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. T. Dmitrienko
%A Z. Kukharski
%T Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 36-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/
%G ru
%F IVM_2001_1_a3
V. G. Zvyagin; V. T. Dmitrienko; Z. Kukharski. Topological characterization of the solution set of Fredholm equations with $f$-compactly contractive perturbations and its applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2001), pp. 36-48. http://geodesic.mathdoc.fr/item/IVM_2001_1_a3/

[1] Smale S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math., 87 (1965), 861–866 | DOI | MR | Zbl

[2] Elworthy K. D., Tromba A. J., “Differential structures and Fredholm maps on Banach manifolds”, Global Analysis, Proc. Sympos. Pure Math., 15, 1970, 45–94 | MR | Zbl

[3] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[4] Zvyagin V. G., “O suschestvovanii nepreryvnoi vetvi sobstvennykh funktsii nelineinoi ellipticheskoi kraevoi zadachi”, Differents. uravneniya, 13:8 (1977), 1524–1527 | MR | Zbl

[5] Zvyagin V. G., “Ob orientirovannoi stepeni odnogo klassa vozmuschenii fredgolmovykh otobrazhenii i bifurkatsii reshenii nelineinoi kraevoi zadachi s nekompaktnymi vozmuscheniyami”, Matem. sb., 182:12 (1991), 1740–1768 | Zbl

[6] Borisovich Yu. G., Zvyagin V. G., “Ob odnom topologicheskom printsipe razreshimosti uravnenii s fredgolmovymi operatorami”, DAN USSR, Ser. A, 1978, no. 3, 203–206 | Zbl

[7] Zvyagin V. G., “O chisle reshenii zadachi Dirikhle dlya uravnenii ellipticheskikh na mnozhestve reshenii”, Matem. zametki, 49:4 (1991), 47–54 | MR | Zbl

[8] Borisovich Yu. G., Sapronov Yu. I., “K topologicheskoi teorii kompaktno suzhaemykh otobrazhenii”, Tr. semin. po funkts. analizu, 12, Izd-vo Voronezhsk. un-ta, 1969, 43–68

[9] Dmitrienko V. T., Zvyagin V. G., “Gomotopicheskaya klassifikatsiya odnogo klassa nepreryvnykh otobrazhenii”, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl

[10] Hertzer G., “Some remarks on $\Phi_+$-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations”, Ann. Soc. Sci. Bruxelles, 89:1 (1975), 495–508 | MR