Spinor formalism for~$n=6$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2001), pp. 11-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_1_a1,
     author = {K. V. Andreev},
     title = {Spinor formalism for~$n=6$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--23},
     publisher = {mathdoc},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_1_a1/}
}
TY  - JOUR
AU  - K. V. Andreev
TI  - Spinor formalism for~$n=6$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 11
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_1_a1/
LA  - ru
ID  - IVM_2001_1_a1
ER  - 
%0 Journal Article
%A K. V. Andreev
%T Spinor formalism for~$n=6$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 11-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_1_a1/
%G ru
%F IVM_2001_1_a1
K. V. Andreev. Spinor formalism for~$n=6$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2001), pp. 11-23. http://geodesic.mathdoc.fr/item/IVM_2001_1_a1/

[1] Norden A. P., “O kompleksnom predstavlenii tenzorov prostranstva Lorentsa”, Izv. vuzov. Matematika, 1959, no. 1, 156–163 | MR | Zbl

[2] Penrouz R., Rindler V., Spinory i prostranstvo-vremya. Dva-spinornoe ischislenie i relyativistskie polya, T. 2, Mir, M., 1987, 528 pp. | MR

[3] Postnikov M. M., Lektsii po geometrii. Semestr 5. Gruppy i algebry Li, Ucheb. posobie, Nauka, M., 1982, 448 pp. | MR

[4] Neifeld E. G., “Ob involyutsiyakh v kompleksnykh prostranstvakh”, Tr. geometrich. semin., 19, Kazan, 1989, 71–82 | MR | Zbl

[5] Neifeld E. G., “Normalizatsiya kompleksnykh grassmanianov i kvadrik”, Tr. geometrich. semin., 20, Kazan, 1990, 58–69 | MR | Zbl

[6] Sintsov D. M., Teoriya konneksov v prostranstve v svyazi s teoriei differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka, Kazan, 1894

[7] Kotelnikov A. P., Vintovoe schislenie i nekotorye prilozheniya ego k geometrii mekhaniki, Kazan, 1895

[8] Andreev K. V., “O vnutrennikh geometriyakh mnogoobraziya ploskikh obrazuyuschikh 6-mernoi kvadriki”, Izv. vuzov. Matematika, 1998, no. 6, 3–8 | MR

[9] Kartan E., Teoriya spinorov, In. lit., M., 1947, 223 pp.

[10] Rozenfeld B. A., Neevklidovy geometrii, GITTL, M., 1955, 744 pp. | MR

[11] Khodzh V., Pido D., Metody algebraicheskoi geometrii, T. 2, In. lit., M., 1954, 431 pp.