A~combined relaxation method for generalized variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 46-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_12_a5,
     author = {I. V. Konnov},
     title = {A~combined relaxation method for generalized variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--54},
     publisher = {mathdoc},
     number = {12},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_12_a5/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A~combined relaxation method for generalized variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 46
EP  - 54
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_12_a5/
LA  - ru
ID  - IVM_2001_12_a5
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A~combined relaxation method for generalized variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 46-54
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_12_a5/
%G ru
%F IVM_2001_12_a5
I. V. Konnov. A~combined relaxation method for generalized variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 46-54. http://geodesic.mathdoc.fr/item/IVM_2001_12_a5/

[1] Noor M. A., Noor K. I., Rassias Th. M., “Invitation to variational inequalities”, Analysis, Geometry and Groups: A Riemann Legacy Volume, Hadronic Press, Palm Harbor, 1993, 373–448 | MR | Zbl

[2] Noor M. A., “Variational inequalities in physical oceanography”, Ocean Waves Engineering, Computational Mechanics Publications, Southampton, 1994, 201–226

[3] Harker P. T., Pang J.-S., “Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications”, Math. Progr., 48:2 (1990), 161–220 | DOI | MR | Zbl

[4] Pang J.-S., “The implicit complementarity problem”, Nonlinear Programm. 4, Proc. 4th Symp. (Madison, Wisc., July 14–16, 1980), Academic Press, New York, 1981, 487–518 | MR

[5] Bensusan A., Lions Zh.-L., Impulsnoe upravlenie i kvazivariatsionnye neravenstva, Nauka, M., 1987, 600 pp.

[6] Mosco U., “Implicit variational problems and quasivariational inequalities”, Lect. Notes Math., 543, Springer-Verlag, Berlin, 1976, 83–156 | MR

[7] Pang J.-S., Yao J.-C., “On a generalization of a normal map and equation”, SIAM J. Contr. and Optim., 33:1 (1995), 168–184 | DOI | MR | Zbl

[8] Konnov I. V., Metody resheniya konechnomernykh variatsionnykh neravenstv, DAS, Kazan, 1998, 101 pp. | MR

[9] Konnov I. V., “Kombinirovannye relaksatsionnye metody dlya poiska tochek ravnovesiya i resheniya smezhnykh zadach”, Izv. vuzov. Matematika, 1993, no. 2, 46–53 | MR | Zbl

[10] Konnov I. V., Combined relaxation methods for variational inequalities, Springer-Verlag, Berlin–Heidelberg, 2001, 181 pp. | MR

[11] Yao J.-C., Guo J.-S., “Variational and generalized variational inequalities with discontinuous mappings”, J. Math. Anal. Appl., 182:2 (1994), 371–392 | DOI | MR | Zbl

[12] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 520 pp.

[13] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhn. Matem. analiz, 19, VINITI, M., 1982, 127–230 | MR

[14] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975, 560 pp. | MR

[15] Kanzow C., Fukushima M., “Equivalence of the generalized complementarity problem to differentiable unconstrained optimization”, J. Optimiz. Theory and Appl., 90:3 (1996), 581–603 | DOI | MR | Zbl

[16] He B., “Inexact implicit methods for monotone general variational inequalities”, Math. Progr., 86:1 (1999), 199–217 | DOI | MR | Zbl