Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_12_a3,
     author = {V. A. Dykhta and N. V. Derenko},
     title = {Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--40},
     publisher = {mathdoc},
     number = {12},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - N. V. Derenko
TI  - Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 32
EP  - 40
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/
LA  - ru
ID  - IVM_2001_12_a3
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A N. V. Derenko
%T Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 32-40
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/
%G ru
%F IVM_2001_12_a3
V. A. Dykhta; N. V. Derenko. Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40. http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/

[1] Dykhta V. A., “Variatsionnyi printsip maksimuma i kvadratichnye usloviya optimalnosti impulsnykh i osobykh protsessov”, Sib. matem. zhurn., 35:1 (1994), 70–82 | MR | Zbl

[2] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[3] Miller B. M., “Metod razryvnoi zameny vremeni v zadachakh optimalnogo upravleniya impulsnymi i diskretno-nepreryvnymi sistemami”, Avtomatika i telemekhanika, 1993, no. 12, 3–32

[4] Orlov Yu. V., Teoriya optimalnykh sistem s obobschennymi upravleniyami, Nauka, M., 1988, 187 pp. | MR

[5] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2000, 256 pp. | MR | Zbl

[6] Orlov Yu. V., Razumovskii D. D., “Chislennye metody resheniya zadach optimalnogo obobschennogo upravleniya”, Avtomatika i telemekhanika, 1993, no. 5, 44–51 | Zbl

[7] Baturin V. A., Urbanovich D. E., Priblizhennye metody optimalnogo upravleniya, osnovannye na printsipe rasshireniya, Nauka. Sib. predpriyatie RAN, Novosibirsk, 1997, 175 pp. | MR | Zbl

[8] Dykhta V. A., Derenko N. V., “Chislennye metody resheniya zadach impulsnogo upravleniya, osnovannye na obobschennom uslovii statsionarnosti”, Sb. tr. Vserossiisk. shkoly “Kompyuternaya logika, algebra i intellektnoe upravlenie. Problemy analiza ustoichivosti razvitiya i strategicheskoi stabilnosti”, T. 2, Izd-vo IrVTs SO RAN, Irkutsk, 1994, 59–70

[9] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000, 160 pp.

[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp. | MR | Zbl

[11] Gurman V. I., Baturin V. A., Moskalenko A. I. i dr., Metody uluchsheniya v vychislitelnom eksperimente, Nauka. Sib. otd., Novosibirsk, 1988, 184 pp. | MR | Zbl