Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_12_a3,
     author = {V. A. Dykhta and N. V. Derenko},
     title = {Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--40},
     publisher = {mathdoc},
     number = {12},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - N. V. Derenko
TI  - Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 32
EP  - 40
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/
LA  - ru
ID  - IVM_2001_12_a3
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A N. V. Derenko
%T Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 32-40
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/
%G ru
%F IVM_2001_12_a3
V. A. Dykhta; N. V. Derenko. Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40. http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/