Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_12_a3,
author = {V. A. Dykhta and N. V. Derenko},
title = {Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {32--40},
publisher = {mathdoc},
number = {12},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/}
}
TY - JOUR AU - V. A. Dykhta AU - N. V. Derenko TI - Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 32 EP - 40 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/ LA - ru ID - IVM_2001_12_a3 ER -
%0 Journal Article %A V. A. Dykhta %A N. V. Derenko %T Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 32-40 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/ %G ru %F IVM_2001_12_a3
V. A. Dykhta; N. V. Derenko. Numerical methods for solving problems of optimal impulse control that are based on the variational maximum principle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 32-40. http://geodesic.mathdoc.fr/item/IVM_2001_12_a3/