Application of theorems on the alternative to the determination of normal solutions of linear systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 21-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_12_a2,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {Application of theorems on the alternative to the determination of normal solutions of linear systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--31},
     publisher = {mathdoc},
     number = {12},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_12_a2/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - Application of theorems on the alternative to the determination of normal solutions of linear systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 21
EP  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_12_a2/
LA  - ru
ID  - IVM_2001_12_a2
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T Application of theorems on the alternative to the determination of normal solutions of linear systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 21-31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_12_a2/
%G ru
%F IVM_2001_12_a2
A. I. Golikov; Yu. G. Evtushenko. Application of theorems on the alternative to the determination of normal solutions of linear systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2001), pp. 21-31. http://geodesic.mathdoc.fr/item/IVM_2001_12_a2/

[1] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 335 pp. | MR

[2] Eremin I. I., Protivorechivye modeli optimalnogo planirovaniya, Nauka, M., 1988, 160 pp. | MR

[3] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 247 pp.

[4] Eremin I. I., Dvoistvennost v lineinoi optimizatsii, UrO RAN, Ekaterinburg, 2001, 179 pp.

[5] Geil D., Teoriya lineinykh ekonomicheskikh modelei, In. lit., M., 1963, 418 pp.

[6] Mangasarian O. L., Nonlinear programming, SIAM, Philadelphia, 1994, 220 pp. | MR

[7] Razumikhin B. S., Fizicheskie modeli i metody teorii ravnovesiya v programmirovanii i ekonomike, Nauka, M., 1975, 304 pp. | MR

[8] Dax A., “The relationship between theorems of the alternative, least norm problems, steepest descent directions and degeneracy: a review”, Annals of Operations Research, 46:1 (1993), 11–60 | DOI | MR | Zbl

[9] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial, M., 1998, 176 pp. | MR

[10] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, Mir, M., 1991, 360 pp. | MR

[11] Eremin I. I., “O kvadratichnykh i polnokvadratichnykh zadachakh vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1998, no. 12, 22–28 | MR | Zbl

[12] Golikov A. I., Evtushenko Yu. G., “Otyskanie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 40:12 (2000), 1766–1786 | MR | Zbl