On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2001), pp. 58-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_11_a7,
     author = {I. G. Shandra},
     title = {On completely idempotent pseudo-connections on {semi-Riemannian} and {pseudo-Riemannian} spaces and on concircular fields},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--70},
     publisher = {mathdoc},
     number = {11},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/}
}
TY  - JOUR
AU  - I. G. Shandra
TI  - On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 58
EP  - 70
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/
LA  - ru
ID  - IVM_2001_11_a7
ER  - 
%0 Journal Article
%A I. G. Shandra
%T On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 58-70
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/
%G ru
%F IVM_2001_11_a7
I. G. Shandra. On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2001), pp. 58-70. http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/

[1] Shandra I. G., “Obobschennye svyaznosti na mnogoobraziyakh s vyrozhdennoi metrikoi”, Izv. vuzov. Matematika, 1992, no. 6, 103–110 | MR | Zbl

[2] Shandra I. G., “O geometrii kasatelnogo rassloeniya nad mnogoobraziem s psevdosvyaznostyu i antikvaternionnykh $f$-strukturakh”, Izv. vuzov. Matematika, 1998, no. 6, 75–87 | MR

[3] Shandra I. G., “On an isotranslated $n\pi$-structure and connections preserving a non-holonomic $(n+1)$-coweb, II”, Webs and quasigroups, TSU, Tver, 1998–1999, 168–177 | MR

[4] Naveira A. M., “A classification of Riemannian almost-product manifolds”, Rend. Math. Appl., 3:3 (1983), 577–592 | MR | Zbl

[5] Otsuki T., “On general connections”, Math. J. Okayama Univ., 9:2 (1960), 99–164 | MR | Zbl

[6] Gil-Medrano O., “Geometric properties of some classes of Riemannian almost-product manifolds”, Rend. Circ. Math. Palermo, 32:3 (1983), 315–329 | DOI | MR | Zbl

[7] Shirokov P. A., “O skhodyaschikhsya napravleniyakh v rimanovykh prostranstvakh”, Izv. fiz.-matem. o-va pri Kazansk. un-te, 3:7 (1934–1935), 77–88

[8] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 256 pp. | MR | Zbl

[9] Mikesh I., “Geodezicheskie otobrazheniya affinnosvyaznykh i rimanovykh prostranstv”, Geometriya-2, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 11, VINITI, M., 2002, 121–162

[10] Vries H. L., “Uber Riemannische Raume, die infinitesimal konforme Transformationen gestatten”, Math. Z., 60:3 (1954), 38–347 | MR

[11] Shandra I. G., “Prostranstva $V(K)$ i iordanovy algebry”, Pamyati Lobachevskogo posvyaschaetsya, Tr. geometrich. semin., no. 1, Kazan, 1992, 99–104 | MR | Zbl

[12] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M., Simmetrii i zakony sokhraneniya matematicheskoi fiziki, Faktorial, M., 1997, 464 pp.