Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2001_11_a7, author = {I. G. Shandra}, title = {On completely idempotent pseudo-connections on {semi-Riemannian} and {pseudo-Riemannian} spaces and on concircular fields}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {58--70}, publisher = {mathdoc}, number = {11}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/} }
TY - JOUR AU - I. G. Shandra TI - On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2001 SP - 58 EP - 70 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/ LA - ru ID - IVM_2001_11_a7 ER -
%0 Journal Article %A I. G. Shandra %T On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2001 %P 58-70 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/ %G ru %F IVM_2001_11_a7
I. G. Shandra. On completely idempotent pseudo-connections on semi-Riemannian and pseudo-Riemannian spaces and on concircular fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2001), pp. 58-70. http://geodesic.mathdoc.fr/item/IVM_2001_11_a7/
[1] Shandra I. G., “Obobschennye svyaznosti na mnogoobraziyakh s vyrozhdennoi metrikoi”, Izv. vuzov. Matematika, 1992, no. 6, 103–110 | MR | Zbl
[2] Shandra I. G., “O geometrii kasatelnogo rassloeniya nad mnogoobraziem s psevdosvyaznostyu i antikvaternionnykh $f$-strukturakh”, Izv. vuzov. Matematika, 1998, no. 6, 75–87 | MR
[3] Shandra I. G., “On an isotranslated $n\pi$-structure and connections preserving a non-holonomic $(n+1)$-coweb, II”, Webs and quasigroups, TSU, Tver, 1998–1999, 168–177 | MR
[4] Naveira A. M., “A classification of Riemannian almost-product manifolds”, Rend. Math. Appl., 3:3 (1983), 577–592 | MR | Zbl
[5] Otsuki T., “On general connections”, Math. J. Okayama Univ., 9:2 (1960), 99–164 | MR | Zbl
[6] Gil-Medrano O., “Geometric properties of some classes of Riemannian almost-product manifolds”, Rend. Circ. Math. Palermo, 32:3 (1983), 315–329 | DOI | MR | Zbl
[7] Shirokov P. A., “O skhodyaschikhsya napravleniyakh v rimanovykh prostranstvakh”, Izv. fiz.-matem. o-va pri Kazansk. un-te, 3:7 (1934–1935), 77–88
[8] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 256 pp. | MR | Zbl
[9] Mikesh I., “Geodezicheskie otobrazheniya affinnosvyaznykh i rimanovykh prostranstv”, Geometriya-2, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 11, VINITI, M., 2002, 121–162
[10] Vries H. L., “Uber Riemannische Raume, die infinitesimal konforme Transformationen gestatten”, Math. Z., 60:3 (1954), 38–347 | MR
[11] Shandra I. G., “Prostranstva $V(K)$ i iordanovy algebry”, Pamyati Lobachevskogo posvyaschaetsya, Tr. geometrich. semin., no. 1, Kazan, 1992, 99–104 | MR | Zbl
[12] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M., Simmetrii i zakony sokhraneniya matematicheskoi fiziki, Faktorial, M., 1997, 464 pp.