On the theory of an analogue of the Neumann problem for equations of mixed type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2001), pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_10_a10,
     author = {K. B. Sabitov and A. A. Akimov},
     title = {On the theory of an analogue of the {Neumann} problem for equations of mixed type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--80},
     publisher = {mathdoc},
     number = {10},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_10_a10/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - A. A. Akimov
TI  - On the theory of an analogue of the Neumann problem for equations of mixed type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 73
EP  - 80
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_10_a10/
LA  - ru
ID  - IVM_2001_10_a10
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A A. A. Akimov
%T On the theory of an analogue of the Neumann problem for equations of mixed type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 73-80
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_10_a10/
%G ru
%F IVM_2001_10_a10
K. B. Sabitov; A. A. Akimov. On the theory of an analogue of the Neumann problem for equations of mixed type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2001), pp. 73-80. http://geodesic.mathdoc.fr/item/IVM_2001_10_a10/

[1] Morawetz C. S., “Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation”, Proc. Roy. Soc., 236:1024 (1956), 141–144 | MR | Zbl

[2] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, In. lit., M., 1961, 208 pp. | MR

[3] Sabitov K. B., “O zadache Moravets dlya uravnenii smeshannogo tipa”, Differentsialnye uravneniya i ikh prilozheniya, Mezhdunarodn. semin. (Samara, 27–30 iyunya 1995), 73 | Zbl

[4] Somova N. V., “O zadache Neimana–Moravets dlya uravneniya Lavrenteva–Bitsadze”, Differentsialnye uravneniya i ikh prilozheniya, Mezhdunarodn. semin. (Samara, 27–30 iyunya 1995), 78

[5] Agmon S., Nirenberg L., Protter M. N., “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Comm. Appl. Math., 6:4 (1953), 455–470 | MR | Zbl

[6] Sabitov K. B., “K voprosu o suschestvovanii resheniya zadachi Trikomi”, Differents. uravneniya, 28:12 (1992), 2092–2101 | MR | Zbl

[7] Sabitov K. B., Kapustin N. Yu., “O reshenii odnoi problemy v teorii zadachi Franklya dlya uravnenii smeshannogo tipa”, Differents. uravneniya, 27 (1991), 60–68 | MR | Zbl

[8] Smirnov M. M., Uravneniya smeshannogo tipa, Ucheb. posobie, Vyssh. shkola, M., 1985, 304 pp. | MR | Zbl

[9] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR

[10] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[11] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973, 712 pp. | MR

[12] Protter M. H., “Uniqueness theorems for Trikomi problem, I”, J. Rat. Mech. and Anal., 2:1 (1953), 107–114 | MR | Zbl

[13] Protter M. H., “Uniqueness theorems for Trikomi problem, II”, J. Rat. Mech. and Anal., 4:5 (1955), 721–733 | MR