On the absence of stability of interpolation in eigenfunctions of the Sturm--Liouville problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_9_a8,
     author = {A. Yu. Trynin},
     title = {On the absence of stability of interpolation in eigenfunctions of the {Sturm--Liouville} problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--73},
     publisher = {mathdoc},
     number = {9},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_9_a8/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - On the absence of stability of interpolation in eigenfunctions of the Sturm--Liouville problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 60
EP  - 73
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_9_a8/
LA  - ru
ID  - IVM_2000_9_a8
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T On the absence of stability of interpolation in eigenfunctions of the Sturm--Liouville problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 60-73
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_9_a8/
%G ru
%F IVM_2000_9_a8
A. Yu. Trynin. On the absence of stability of interpolation in eigenfunctions of the Sturm--Liouville problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 60-73. http://geodesic.mathdoc.fr/item/IVM_2000_9_a8/

[1] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zap. Leningrad. gos. ped. in-ta, 166 (1958), 213–219 | MR

[2] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl

[3] Sansone Dzh., Obyknovennye differentsialnye uravneniya, T. 1, In. lit., M., 1953, 346 pp. | MR

[4] Sansone Dzh., Obyknovennye differentsialnye uravneniya, T. 2, In. lit., M., 1954, 415 pp.

[5] Levitan B. M., Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, Gostekhizdat, M.–L., 1950, S. 1–160

[6] Trynin A. Yu., O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, Dep. v VINITI 26.04.91, No 1763–V91, Saratovskii un-t, 1991, 32 pp.

[7] Privalov A. A., Teoriya interpolirovaniya funktsii, Izd-vo Saratovsk. un-ta, Saratov, 1990 | MR

[8] Privalov A. A., “Kriterii ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha”, Izv. vuzov. Matematika, 1986, no. 5, 49–59 | MR

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 543 pp. | MR

[10] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1982, 329 pp. | MR | Zbl

[11] McLaughlin J. R., “Inverse spectral theory using nodal points as data — a uniqueness result”, J. Diff. Eq., 73:2 (1988), 354–362 | DOI | MR | Zbl