Generalized curves and necessary conditions for a~discontinuous solution of a~three-dimensional variational problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 21-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_9_a3,
     author = {S. F. Morozov and A. V. Semenov},
     title = {Generalized curves and necessary conditions for a~discontinuous solution of a~three-dimensional variational problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--26},
     publisher = {mathdoc},
     number = {9},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_9_a3/}
}
TY  - JOUR
AU  - S. F. Morozov
AU  - A. V. Semenov
TI  - Generalized curves and necessary conditions for a~discontinuous solution of a~three-dimensional variational problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 21
EP  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_9_a3/
LA  - ru
ID  - IVM_2000_9_a3
ER  - 
%0 Journal Article
%A S. F. Morozov
%A A. V. Semenov
%T Generalized curves and necessary conditions for a~discontinuous solution of a~three-dimensional variational problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 21-26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_9_a3/
%G ru
%F IVM_2000_9_a3
S. F. Morozov; A. V. Semenov. Generalized curves and necessary conditions for a~discontinuous solution of a~three-dimensional variational problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 21-26. http://geodesic.mathdoc.fr/item/IVM_2000_9_a3/

[1] Morozov S. F., Vvedenie v teoriyu razryvnykh zadach variatsionnogo ischisleniya, izd-vo Nizhegorodsk. un-ta, N. Novgorod, 1996, 102 pp.

[2] Koshelev V. N., Morozov S. F., “Teoremy suschestvovaniya razryvnykh reshenii v prostranstvennykh variatsionnykh zadachakh, I”, Izv. vuzov. Matematika, 1970, no. 5, 47–52 | MR | Zbl

[3] Koshelev V. N., Morozov S. F., “Teoremy suschestvovaniya razryvnykh reshenii v prostranstvennykh variatsionnykh zadachakh, II”, Izv. vuzov. Matematika, 1977, no. 2, 49–59 | Zbl

[4] Koshelev V. N., Morozov S. F., “O neobkhodimykh usloviyakh ekstremuma variatsionnykh zadach v neparametricheskoi forme na sovokupnosti razryvnykh funktsii”, Izv. vuzov. Matematika, 1970, no. 12, 37–46 | MR | Zbl

[5] Morozov S. F., Semenov A. V., “O suschestvovanii obobschennykh i razryvnykh reshenii prostranstvennykh variatsionnykh zadach”, Vestn. Nizhegorodsk. un-ta. Ser. matem. modelir. i optimal. upravlenie, 1998, no. 2, 166–173

[6] Morozov S. F., Semenov A. V., Obobschennye resheniya razryvnykh zadach variatsionnogo ischisleniya, Dep. v VINITI 26.03.97, No 923-V97, Nizhegorodsk. un-t, N. Novgorod, 1997, 26 pp.

[7] Krotov V. F., “Razryvnye resheniya variatsionnykh zadach”, Izv. vuzov. Matematika, 1960, no. 5, 86–98 | MR | Zbl

[8] Krotov V. F., “Osnovnaya zadacha variatsionnogo ischisleniya dlya prosteishego funktsionala na sovokupnosti razryvnykh funktsii”, DAN SSSR, 137:1 (1961), 31–34 | MR | Zbl

[9] Krotov V. F., Bukreev V. V., Gurman V. I., Novye metody variatsionnogo ischisleniya v dinamike poleta, Mashinostroenie, M., 1969, 288 pp.

[10] Young L. C., “Generalized curves and the existence of an attained absolute minimum in the calculus of variations”, C. R. Sci. Letters Varsovie. C. III, 30 (1937), 212–234 | Zbl

[11] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974, 488 pp. | MR

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp. | MR

[13] Khalmosh P. R., Teoriya mery, In. lit., M., 1953, 292 pp. | MR

[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, T. I, In. lit., M., 1962, 895 pp.