The Laplace transform and a~noncommutative version of the Payley--Wiener theorem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_9_a2,
     author = {A. R. Mirotin},
     title = {The {Laplace} transform and a~noncommutative version of the {Payley--Wiener} theorem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--20},
     publisher = {mathdoc},
     number = {9},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - The Laplace transform and a~noncommutative version of the Payley--Wiener theorem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 16
EP  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/
LA  - ru
ID  - IVM_2000_9_a2
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T The Laplace transform and a~noncommutative version of the Payley--Wiener theorem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 16-20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/
%G ru
%F IVM_2000_9_a2
A. R. Mirotin. The Laplace transform and a~noncommutative version of the Payley--Wiener theorem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 16-20. http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/

[1] Mirotin A. R., “Teorema Peli–Vinera dlya konusov v lokalno-kompaktnykh abelevykh gruppakh”, Izv. vuzov. Matematika, 1995, no. 3, 35–44 | MR | Zbl

[2] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974, 399 pp. | MR

[3] Mirotin A. R., “Positive semicharacters of Lie semigroups”, Positivity, 3:1 (1999), 23–31 | DOI | MR | Zbl

[4] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978, 343 pp. | MR | Zbl

[5] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975, 654 pp.