The Laplace transform and a noncommutative version of the Payley–Wiener theorem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 16-20
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{IVM_2000_9_a2,
author = {A. R. Mirotin},
title = {The {Laplace} transform and a~noncommutative version of the {Payley{\textendash}Wiener} theorem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {16--20},
year = {2000},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/}
}
A. R. Mirotin. The Laplace transform and a noncommutative version of the Payley–Wiener theorem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2000), pp. 16-20. http://geodesic.mathdoc.fr/item/IVM_2000_9_a2/
[1] Mirotin A. R., “Teorema Peli–Vinera dlya konusov v lokalno-kompaktnykh abelevykh gruppakh”, Izv. vuzov. Matematika, 1995, no. 3, 35–44 | MR | Zbl
[2] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974, 399 pp. | MR
[3] Mirotin A. R., “Positive semicharacters of Lie semigroups”, Positivity, 3:1 (1999), 23–31 | DOI | MR | Zbl
[4] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978, 343 pp. | MR | Zbl
[5] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975, 654 pp.