Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2000), pp. 52-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_8_a6,
     author = {M. I. Sumin},
     title = {Suboptimal control of semilinear elliptic equations with phase {constraints.~II.} {Sensitivity,} genericity of the regular maximum prin},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--63},
     publisher = {mathdoc},
     number = {8},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 52
EP  - 63
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/
LA  - ru
ID  - IVM_2000_8_a6
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 52-63
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/
%G ru
%F IVM_2000_8_a6
M. I. Sumin. Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2000), pp. 52-63. http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/

[1] Sumin M. I., “Suboptimalnoe upravlenie polulineinymi ellipticheskimi uravneniyami s fazovymi ogranicheniyami. I: Printsip maksimuma dlya minimiziruyuschikh posledovatelnostei, normalnost”, Izv. vuzov. Matematika, 2000, no. 6, 33–44 | MR | Zbl

[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[3] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami”, Sb. dokl. 1-i Mezhdunarodn. konf. “Matematicheskie algoritmy” (N. Novgorod, 14–19 avgusta 1994 g.), N. Novgorod, 1995, 116–125

[4] Sumin M. I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl

[5] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zhurn. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl

[6] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: svoistva normalnosti, subgradientnyi dvoistvennyi metod”, Zhurn. vychisl. matem. i matem. fiz., 37:2 (1997), 162–178 | MR | Zbl

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[8] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory”, Can. J. Math., 38:2 (1986), 431–452 | MR | Zbl

[9] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | MR | Zbl

[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 279 pp. | MR | Zbl

[11] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[12] Sumin M. I., “Optimalnoe upravlenie ob'ektami, opisyvaemymi kvazilineinymi ellipticheskimi uravneniyami”, Differents. uravneniya, 25:8 (1989), 1406–1416 | MR

[13] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR | Zbl

[14] Mordukhovih B. S., Shao Y., “Nonsmooth sequential analysis in Asplund spaces”, Trans. Amer. Math. Soc., 348:4 (1996), 1235–1280 | DOI | MR