Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_8_a6, author = {M. I. Sumin}, title = {Suboptimal control of semilinear elliptic equations with phase {constraints.~II.} {Sensitivity,} genericity of the regular maximum prin}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {52--63}, publisher = {mathdoc}, number = {8}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/} }
TY - JOUR AU - M. I. Sumin TI - Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 52 EP - 63 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/ LA - ru ID - IVM_2000_8_a6 ER -
%0 Journal Article %A M. I. Sumin %T Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2000 %P 52-63 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/ %G ru %F IVM_2000_8_a6
M. I. Sumin. Suboptimal control of semilinear elliptic equations with phase constraints.~II. Sensitivity, genericity of the regular maximum prin. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2000), pp. 52-63. http://geodesic.mathdoc.fr/item/IVM_2000_8_a6/
[1] Sumin M. I., “Suboptimalnoe upravlenie polulineinymi ellipticheskimi uravneniyami s fazovymi ogranicheniyami. I: Printsip maksimuma dlya minimiziruyuschikh posledovatelnostei, normalnost”, Izv. vuzov. Matematika, 2000, no. 6, 33–44 | MR | Zbl
[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[3] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami”, Sb. dokl. 1-i Mezhdunarodn. konf. “Matematicheskie algoritmy” (N. Novgorod, 14–19 avgusta 1994 g.), N. Novgorod, 1995, 116–125
[4] Sumin M. I., “Suboptimal control of systems with distributed parameters: minimizing sequences, value function, regularity, normality”, Control and Cybernetics, 25:3 (1996), 529–552 | MR | Zbl
[5] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zhurn. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl
[6] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: svoistva normalnosti, subgradientnyi dvoistvennyi metod”, Zhurn. vychisl. matem. i matem. fiz., 37:2 (1997), 162–178 | MR | Zbl
[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR
[8] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part I: Theory”, Can. J. Math., 38:2 (1986), 431–452 | MR | Zbl
[9] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. Part II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | MR | Zbl
[10] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 279 pp. | MR | Zbl
[11] Ekeland I., “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl
[12] Sumin M. I., “Optimalnoe upravlenie ob'ektami, opisyvaemymi kvazilineinymi ellipticheskimi uravneniyami”, Differents. uravneniya, 25:8 (1989), 1406–1416 | MR
[13] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR | Zbl
[14] Mordukhovih B. S., Shao Y., “Nonsmooth sequential analysis in Asplund spaces”, Trans. Amer. Math. Soc., 348:4 (1996), 1235–1280 | DOI | MR