Homogeneous submanifolds in four-dimensional affine and projective geometry
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_7_a6,
     author = {N. P. Mozhei},
     title = {Homogeneous submanifolds in four-dimensional affine and projective geometry},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--52},
     publisher = {mathdoc},
     number = {7},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/}
}
TY  - JOUR
AU  - N. P. Mozhei
TI  - Homogeneous submanifolds in four-dimensional affine and projective geometry
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 41
EP  - 52
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/
LA  - ru
ID  - IVM_2000_7_a6
ER  - 
%0 Journal Article
%A N. P. Mozhei
%T Homogeneous submanifolds in four-dimensional affine and projective geometry
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 41-52
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/
%G ru
%F IVM_2000_7_a6
N. P. Mozhei. Homogeneous submanifolds in four-dimensional affine and projective geometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 41-52. http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/

[1] Lie S., “Bestimmung aller Flächen, die eine kontinuierliche Schar von projektiven Transformationen gestutten”, Gesamelte Abhandlungen, V. 6, Leipzig, 1926, 494–538

[2] Favard J., Cours de géométrie différentielle locale, Gauthier-Villars, Paris, 1957, 553 pp. | MR | Zbl

[3] Nomizu K., Sasaki T., “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73 (1991), 39–44 | DOI | MR | Zbl

[4] Nomizu K., Sasaki T., Affine differentail geometry, Cambridge Univ. Press, 1994 | MR | Zbl

[5] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry of submanifolds, 8 (1996), 168–178 | MR

[6] Abdalla B. E., Dillen F., Vranken L., “Affine homogeneous surfaces in $\mathbb{R}$ with vanishing Pick invariant”, Abh. Math. Sem. Univ. Hamburg, 67 (1997), 105–115 | DOI | MR | Zbl

[7] Nomizu K., Sasaki T., “On the classification of projectively homogeneous surfaces”, Results Math., 20 (1991), 698–724 | MR | Zbl

[8] Dillen F., Sasaki T., Vranken L., “The classification of projectively homogeneous surfaces, II”, Osaka J. Math., 35 (1998), 117–146 | MR | Zbl

[9] Goto M., Grosshans F., Semisimple Lie algebras, Marcel Decker, New York, 1978 | MR | Zbl