Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_7_a6, author = {N. P. Mozhei}, title = {Homogeneous submanifolds in four-dimensional affine and projective geometry}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {41--52}, publisher = {mathdoc}, number = {7}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/} }
N. P. Mozhei. Homogeneous submanifolds in four-dimensional affine and projective geometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2000), pp. 41-52. http://geodesic.mathdoc.fr/item/IVM_2000_7_a6/
[1] Lie S., “Bestimmung aller Flächen, die eine kontinuierliche Schar von projektiven Transformationen gestutten”, Gesamelte Abhandlungen, V. 6, Leipzig, 1926, 494–538
[2] Favard J., Cours de géométrie différentielle locale, Gauthier-Villars, Paris, 1957, 553 pp. | MR | Zbl
[3] Nomizu K., Sasaki T., “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73 (1991), 39–44 | DOI | MR | Zbl
[4] Nomizu K., Sasaki T., Affine differentail geometry, Cambridge Univ. Press, 1994 | MR | Zbl
[5] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry of submanifolds, 8 (1996), 168–178 | MR
[6] Abdalla B. E., Dillen F., Vranken L., “Affine homogeneous surfaces in $\mathbb{R}$ with vanishing Pick invariant”, Abh. Math. Sem. Univ. Hamburg, 67 (1997), 105–115 | DOI | MR | Zbl
[7] Nomizu K., Sasaki T., “On the classification of projectively homogeneous surfaces”, Results Math., 20 (1991), 698–724 | MR | Zbl
[8] Dillen F., Sasaki T., Vranken L., “The classification of projectively homogeneous surfaces, II”, Osaka J. Math., 35 (1998), 117–146 | MR | Zbl
[9] Goto M., Grosshans F., Semisimple Lie algebras, Marcel Decker, New York, 1978 | MR | Zbl